镍镉电池特性

镍镉电池 镍氢电池的原理及充电方法

--镍镉/镍氢电池的发展

2009年09月23日 作者:匿名 来源:艾特斯电池评测实验室 编辑:自由 镍镉/镍氢电池的发展

1899年,Waldmar Jungner在开口型镍镉电池中,首先使用了镍极板,几乎与此同时,Thomas Edison 发明了用于电动车的镍铁电池。遗憾的是,由于当时这些碱性蓄电池的极板材料比其它蓄电池的村料贵得多,因此实际应用受到了极大的限制。

后来,Jungner的镍镉电池经过几次重要改进,性能明显改善。其中最重要的改进是在1932年,科学家在镍电池中开始使用了活性物质。他们将活性物质放入多孔的镍极板中,然后再将镍极板装入金属壳内。镍镉电池发展史上另一个重要的里程碑是1947年密封型镍镉电池研制成功。在这种电池中,化学反应产生的各种气体不用排出,可以在电池内部化合。密封镍镉电池的研制成功,使镍镉电池的应用范围大大增加。

密封镍镉电池效率高、循环寿命长、能量密度大、体积小、重量轻、结构紧凑,并且不需要维护,因此在工业和消费产品中得到了广泛应用。

随着空间技术的发展,人们对电源的要求越来越高。70年代中期,美国研制成功了功率大、重量轻、寿命长、成本低的镍氢电池,并且于 1978年成功地将这种电池应用在导航卫星上,镍氢电池与同体积镍镉电池相比,容量可提高一倍,而且没有重金属镉带来的污染问题。它的工作电压与镍镉电池完全相同,工作寿命也大体相当,但它具有良好的过充电和过放电性能。近年来,镍氢电池受到世界各国的重视,各种新技术层出不穷。镍氢电池刚问世时,要使用高压容器储存氢气,后来人们采用金属氢化物来储存氢气,从而制成了低压甚至常压镍氢电池。1992年,日本三洋公司每月可生产200万只镍氢电池。目前国内已有20多个单位研制生产镍氢电池,国产镍氢电池的综合性能已经达到国际先进水平。 蓄电池参数

蓄电池的五个主要参数为:电池的容量、标称电压、内阻、放电终止电压和充电终止电压。电池的容量通常用Ah(安时)表示,1Ah就是能在1A的电流下放电1小时。单元电池内活性物质的数量决定单元电池含有的电荷量,而活性物质的含量则由电池使用的材料和体积决定,因此,通常电池体积越大,容量越高。与电池容量相关的一个参数是蓄电池的充电电流。蓄电池的充电电流通常用充电速率C表示,C为蓄电池的额定容量。例如,用2A电流对1Ah电池充电,充电速率就是2C;同样地,用2A电流对500mAh电池充电,充电速率就是4C。

电池刚出厂时,正负极之间的电势差称为电池的标称电压。标称电压由极板材料的电极电位和内部电解液的浓度决定。当环境温度、使用时间和工作状态变化时,单元电池的输出电压略有变化,此外,电池的输出电压与电池的剩余电量也有一定关系。单元镍镉电池的标称电压约为1.3V(但一般认为是1.25V),单元镍氢电池的标称电压为1.25V。

电池的内阻决定于极板的电阻和离子流的阻抗。在充放电过程中,极板的电阻是不变的,但是,离子流的阻抗将随电解液浓度的变化和带电离子的增减而变化。

蓄电池充足电时,极板上的活性物质已达到饱和状态,再继续充电,蓄电池的电压也不会上升,此时的电压称为充电终止电压。镍镉电池的充电终止电压为1.75~1.8V,镍氢电池的充电终止电压为1.5V。

表1-1 镍镉电池不同放电率时的放电终止电压

放电终止电压是指蓄电池放电时允许的最低电压。如果电压低于放电终止电压后蓄电池继续放电,电池两端电压会迅速下降,形成深度放电,这样,极板上形成的生成物在正常充电时就不易再恢复,从而影响电池的寿命。放电终止电压和放电率有关。镍镉电池的放电终止电压和放电速率的关系如表1-1所列,镍氢电池的放电终止电压一般规定为1V。 镍镉蓄电池的工作原理

镍镉蓄电池的正极材料为氢氧化亚镍和石墨粉的混合物,负极材料为海绵状镉粉和氧化镉粉,电解液通常为氢氧化钠或氢氧化钾溶液。当环境温度较高时,使用密度为1.17~1.19(15℃时)的氢氧化钠溶液。当环境温度较低时,使用密度为1.19~1.21(15℃时)的氢氧化钾溶液。在-15℃以下时,使用密度为1.25~1.27(15℃时)的氢氧化钾溶液。为兼顾低温性能和荷电保持能力,密封镍镉蓄电池采用密度为1.40(15℃时)的氢氧化钾溶液。为了增加蓄电池的容量和循环寿命,通常在电解液中加入少量的氢氧化锂(大约每升电解液加15~20g)。

镍镉蓄电池充电后,正极板上的活性物质变为氢氧化镍〔NiOOH〕,负极板上的活性物质变为金属镉;镍镉电池放电后,正极板上的活性物质变为氢氧化亚镍,负极板上的活性物质变为氢氧化镉。

1.放电过程中的电化学反应

(1)负极反应

负极上的镉失去两个电子后变成二价镉离子Cd2+,然后立即与溶液中的两个氢氧根离子OH-结合生成氢氧化镉Cd(OH)2,沉积到负极板上。

(2)正极反应

正极板上的活性物质是氢氧化镍(NiOOH)晶体。镍为正三价离子(Ni3+),晶格中每两个镍离子可从外电路获得负极转移出的两个电子,生成两个二价离子2Ni2+。与此同时,溶液中每两个水分子电离出的两个氢离子进入正极板,与晶格上的两个氧负离子结合,生成

两个氢氧根离子,然后与晶格上原有的两个氢氧根离子一起,与两个二价镍离子生成两个氢氧化亚镍晶体。

将以上两式相加,即得镍镉蓄电池放电时的总反应:

2.充电过程中的化学反应

充电时,将蓄电池的正、负极分别与充电机的正极和负极相连,电池内部发生与放电时完全相反的电化学反应,即负极发生还原反应,正极发生氧化反应。

(1)负极反应

充电时负极板上的氢氧化镉,先电离成镉离子和氢氧根离子,然后镉离子从外电路获得电子,生成镉原子附着在极板上,而氢氧根离子进入溶液参与正极反应:

(2) 正极反应

在外电源的作用下,正极板上的氢氧化亚镍晶格中,两个二价镍离子各失去一个电子生成三价镍离子,同时,晶格中两个氢氧根离子各释放出一个氢离子,将氧负离子留在晶格上,释出的氢离子与溶液中的氢氧根离子结合,生成水分子。然后,两个三价镍离子与两个氧负离子和剩下的二个氢氧根离子结合,生成两个氢氧化镍晶体:

将以上两式相加,即得镍镉蓄电池充电时的电化学反应:

蓄电池充电终了时,充电电流将使电池内发生分解水的反应,在正、负极板上将分别有大量氧气和氢气析出,其电化学反应如下:

从上述电极反应可以看出,氢摒化钠或氢氧化钾并不直接参与反应,只起导电作用。从电池反应来看,充电过程中生成水分子,放电过程中消耗水分子,因此充、放电过程中电解液浓度变化很小,不能用密度计检测充放电程度。

3. 端电压

充足电后,立即断开充电电路,镍镉蓄电池的电动势可达1.5V左右,但很快就下降到

1.31-1.36V。

镍镉蓄电池的端电压随充放电过程而变化,可用下式表示:

U充=E充+I充R内

U放=E放-I放R内

从上式可以看出,充电时,电池的端电压比放电时高,而且充电电流越大,端电压越高;放电电流越大,端电压越低。

当镍镉蓄电池以标准放电电流放电时,平均工作电压为1.2V。采用8h率放电时,蓄电池的端电压下降到1.1V后,电池即放完电。

4. 容量和影响容量的主要因素

蓄电池充足电后,在一定放电条件下,放至规定的终止电压时,电池放出的总容量称为电池的额定容量,容量Q用放电电流与放电时间的乘积来表示,表示式如下:

Q=I·t(Ah)

镍镉蓄电池容量与下列因素有关:

① 活性物质的数量;

② 放电率;

③ 电解液。

放电电流直接影响放电终止电压。在规定的放电终止电压下,放电电流越大,蓄电池的容量越小。

使用不同成分的电解液,对蓄电池的容量和寿命有一定的影响。通常,在高温环境下,为了提高电池容量,常在电解液中添加少量氢氧化锂,组成混合溶液。实验证明:每升电解液中加入15~20g含水氢氧化锂,在常温下,容量可提高4%~5%,在40℃时,容量可提高20%。然而,电解液中锂离子的含量过多,不仅使电解液的电阻增大,还会使残留在正极板上的锂离子(Li+)慢慢渗入晶格内部,对正极的化学变化产生有害影响。

电解液的温度对蓄电池的容量影响较大。这是因为随着电解液温度升高,极板活性物质的化学反应也逐步改善。

电解液中的有害杂质越多,蓄电池的容量越小。主要的有害杂质是碳酸盐和硫酸盐。它们能使电解液的电阻增大,并且低温时容易结晶,堵塞极板微孔,使蓄电池容量显著下降。此外,碳酸根离子还能与负极板作用,生成碳酸镉附着在负极板表面上,从而引起导电不良,使蓄电池内阻增大,容量下降。

5. 内阻

镍镉蓄电池的内阻与电解液的导电率、极板结构及其面积有关,而电解液的导电率又与密度和温度有关。电池的内阻主要由电解液的电阻决定。氢氧化钾和氢氧化钠溶液的电阻系数随密度而变。18℃时氢氧化钾溶液和氢氧化钠溶液的电阻系数最小。通常镍镉蓄电池的内阻可用下式计算:

6. 效率与寿命

在正常使用的条件下,镍镉电池的容量效率ηAh为67%-75%,电能效率ηWh为55%~65%,循环寿命约为2000次。容量效率ηAh和电能效率ηWh计算公式如下:

(U充和U放应取平均电压)

7. 记忆效应

镍镉电池使用过程中,如果电量没有全部放完就开始充电,下次再放电时,就不能放出全部电量。比如,镍镉电池只放出80%的电量后就开始充电,充足电后,该电池也只能放出80%的电量,这种现象称为记忆效应。

电池全部放完电后,极板上的结晶体很小。电池部分放电后,氢氧化亚镍没有完全变为氢氧化镍,剩余的氢氧化亚镍将结合在一起,形成较大的结晶体。结晶体变大是镍镉电池产生记忆效应的主要原因。

镍氢电池的工作原理

镍氢电池和同体积的镍镉电池相比,容量增加一倍,充放电循环寿命也较长,并且无记忆效应。镍氢电池正极的活性物质为NiOOH(放电时)和Ni(OH)2(充电时),负极板的活性物质为H2(放电时)和H2O(充电时),电解液采用30%的氢氧化钾溶液,充放电时的电化学反应如下:

从方程式看出:充电时,负极析出氢气,贮存在容器中,正极由氢氧化亚镍变成氢氧化镍(NiOOH)和H2O;放电时氢气在负极上被消耗掉,正极由氢氧化镍变成氢氧化亚镍。 过量充电时的电化学反应:

从方程式看出,蓄电池过量充电时,正极板析出氧气,负极板析出氢气。由于有催化剂的氢电极面积大,而且氢气能够随时扩散到氢电极表面,因此,氢气和氧气能够很容易在蓄电池内部再化合生成水,使容器内的气体压力保持不变,这种再化合的速率很快,可以使蓄电池内部氧气的浓度,不超过千分之几。

从以上各反应式可以看出,镍氢电池的反应与镍镉电池相似,只是负极充放电过程中生

成物不同,从后两个反应式可以看出,镍氢电池也可以做成密封型结构。镍氢电池的电解液多采用KOH水溶液,并加入少量的LiOH。隔膜采用多孔维尼纶无纺布或尼龙无纺布等。为了防止充电过程后期电池内压过高,电池中装有防爆装置。

电池充电特性

镍镉电池充电特性曲线如图1所示。当恒定电流刚充入放完电的电池时,由于电池内阻产生压降,所以电池电压很快上升(A点)。此后,电池开始接受电荷,电池电压以较低的速率持续上升。在这个范围内(AB之间),电化学反应以一定的速率产生氧气,同时氧气也以同样的速率与氢气化合,因此,电池内部的温度和气体压力都很低。

图 1 镍镉电池的充电曲线

电池充电过程中,产生的氧气高于复合的氧气时,电池内压力升高。电池内的正常压力*大约为1磅力/英寸2。过充电时,根据充电速率,电池内部压力将很快上升到100磅力/英寸2或者更高。

研究蓄电池的各种充电方法时,镍镉电池内产生的气体是一个重要问题。气泡聚集在极板表面,将减小极板表面参与化学反应的面积并且增加电池的内阻。过充电时,电池内产生的大量气体,如果不能很快复合,电池内部的压力就会显著增加,这样将损伤电池。此外,压力过大时,密封电池将打开放气孔,从而使电解液逸散。若电解液反复通过放气孔逸散,电解液的粘稠性增大,极板间离子的传输变得困难,因此电池的内阻增加,容量下降。 经过一定时间后(C点),电解液中开始产生气泡,这些气泡聚集在极板表面,使极板的有效面积减小,所以电池的内阻抗增加,电池电压开始较快上升。这是接近充足电的信号。 充足电后,充入电池的电流不是转换为电池的贮能,而是在正极板上产生氧气超电位。氧气是由于电解液电解而产生的,不是由于氢氧化镉还原为镉而产生的。在氢氧化钾和水组成的电解液中,氢氧离子变成氧、水和自由电子,反应式为

4OH―→O2↑+2H2O+4e―

虽然电解液产生的氧气能很快在负极板表面的电解液中复合,但是电池的温度仍显著升高。此外由于充电电流用来产生氧气,所以电池内的压力也升高。

由于从大量的氢氧离子中比从很少的氢氧化镉中更容易分解出氧气,所以电池内的温度急剧上升,这样就使电池电压下降。因此电池电压曲线出现峰值(D点)。

电解液中,氧气的产生和复合是放热反应,电池过充电时(E点),不停地产生氧气,从而

使电池内的温度和压力升高。如果强制排出气体,将引起电解液减少、电池容量下降并损伤电池。若气体不能很快排出,电池将会爆炸。

采用低速率恒流涓流充电时,电池内将产生枝晶。这些枝晶能够通过隔板在极板之间扩散。在扩散较严重的情况下,这些枝晶会造成电池部分或全部短路。

镍氢电池的充电特性与镍镉电池类似,充电过程中二者的电压、温度曲线如图1-2和图1-3所示。可以看出,充电终止时,镍镉电池电压下降比镍氢电池要大得多。当电池容量达到额定容量的80%以前,镍镉电池的温度缓慢上升,当电池容量达到90%以后,镍镉电池的温度才很快上升。当电池基本充足电时,镍镉/镍氢电池的温度上升率基本相同。

充电过程与充电方法

电池的充电过程通常可分为预充电、快速充电、补足充电、涓流充电四个阶段。

对长期不用的或新电池充电时,一开始就采用快速充电,会影响电池的寿命。因此,这种电池应先用小电流充电,使其满足一定的充电条件,这个阶段称为预充电。

快速充电就是用大电流充电,迅速恢复电池电能。快速充电速率一般在1C以上,快速充时间由电池容量和充电速率决定。

为了避免过充电,一些充电器采用小电流充电。镍镉电池正常充电时,可以接受C/10或更低的充电速率,这样充电时间要10h以上。采用小电流充电,电池内不会产生过多的气体,电池温度也不会过高。只要电池接到充电器上,低速率恒流充电器就能对电池提供很小的涓流充电电流。电池采用小电流充电时,电池内产生的热量可以自然散去。

涓流充电器的主要问题是充电速度太慢,例如,容量为1Ah的电池,采用C/10充电速率时,充电时间要10h以上。此外,电池采用低充电速率反复充电时,还会产生枝晶。大部分涓流充电器中,都没有任何电压或温度反馈控制,因而不能保证电池充足电后,立即关断充电器。

快速充电分恒流充电和脉冲充电两种,恒流充电就是以恒定电流对电流充电,脉冲充电则是首先用脉冲电流对电池充电。然后让电池放电,如此循环。电池脉冲的幅值很大、宽度很窄。通常放电脉冲的幅值为充电脉冲的3倍左右。虽然放电脉冲的幅值与电池容量有关,但是,与充电电流幅值的比值保持不变,脉冲充电时,充电电流波形如图1-4所示。

充电过程中,镍镉电池中的氢氧化镍还原为氢氧化亚镍,氢氧化镉还原为镉。在这个过程中产生的气泡,聚集在极板两边,这样就会减小极板的有效面积,使极板的内阻增大。由于极板的有效面积变小,充入全部电量所需的时间增加。

加入放电脉冲后,气泡离开极板并与负极板上的氧复合。这个去极化过程减小了电池的内部压力、温度和内阻。同时,充入电池的大部分电荷都转换为化学能,而不会转变为气体和热量。

充放电脉冲宽度的选择应能保证极板恢复原来的晶体结构,从而消除记忆效应。采用放电去极化措施后,可以提高充电效率并且允许大电流快速充电。

采用某些快速充电止法时,快速充电终止后,电池并未充足电。为了保证充入100%的电量,还应加入补足充电过程。补足充电速率一般不超过0.3C。在补足充电过程中,温度会继续上升,当温度超过规定的极限时,充电器转入涓流充电状态。

存放时,镍镉电池的电量将按C/30到C/50的放电速率减小,为了补偿电池因自放电而损失的电量,补足充电结束后,充电器应自动转入涓流电过程。涓流充电也称为维护充电。根据电池的自放电特性,涓流充电速率一般都很低。只要电池接在充电器上并且充电器接通电源,在维护充电状态下,充电器将以某一充电速率给电池补充电荷,这样可使电池总处于充足电状态。

快速充电终止控制方法

采用快速充电法时,充电电流为常规充电电流的几十倍。充足电后,如果不及时停止快速充电,电池的温度和内部压力将迅速上升。内部压力过大时,密封电池将打开放气孔,从而使电解液逸散,造成电解液的粘稠性增大,电池的内阻增大,容量下降。

从镍镉电池快速充电特性可以看出,充足电后,电池电压开始下降,电池的温度和内部压力迅速上升,为了保证电池充足电又不过充电,可以采用定时控制、电压控制和温度控制待多种方法。

(1)定时控制

1.25C充电速率时,电池1h可充足;采用2.5C充电速率时,30min可充足。因此,根据电池的容量和充电电流,很容易确定所需的充电时间。这种控制方法最简单,但是由于电池的起始充电状态不完全相同,有的电池充不足,有的电池过充电,因此,只有充电速率小于0.3C时,才允许采用这种方法。

(2)电压控制

在电压控制法中,最容易检测的是电池的最高电压。常用的电压控制法有:

最高电压(Vmax) 从充电特性曲线可以看出,电池电压达到最大值时,电池即充足电。充电过程中,当电池电压达到规定值后,应立即停止快速充电。这种控制方法的缺点是:电

池充足电的最高电压随环境温度、充电速率而变,而且电池组中各单体电池的最高充电压也有差别,因此采用这种方法不可能非常准确地判断电池已足充电。

电压负增量(-ΔV) 由于电池电压的负增量与电池组的绝对电压无关,而且不受环境温度和充电速率等因素影响,因此可以比较准确地判断电池已充足电。这种控制方法的缺点是:电池电压出现负增量后,电池已经过充电,因此电池的温度较高。此外镍氢电池充足电后,电池电压要经过较长时间,才出现负增量,过充电较严重。因此,这种控制方法主要适用于镍镉电池。

电压零增量(0ΔV) 镍氢电池充电器中,为了避免等待出现电压负增量的时间过久而损坏电池,通常采用0ΔV控制法。这种方法的缺点是:充足电以前,电池电压在某一段时间内可能变化很小,从而造成过早地停止快速充电。为此,目前大多数镍氢电池快速充电器都采用高灵敏-0ΔV检测,当电池电压略有降低时,立即停止快速充电。

(3)温度控制

为了避免损坏电池,电池温度过低时不能开始快速充电,电池温度上升到规定数值后,必须立即停止快速充电。常用的温度控制方法有:

最高温度(Tmax) 充电过程中,通常当电池温度达到45℃时,应立即停止快速充电。电池的温度可通过与电池装在一起的热敏电阻来检测。这种方法的缺点是热敏电阻的响应时间较长,温度检测有一定滞后,同时,电池的最高工作温度与环境温度有关。当环境温度过低时,充足电后,电池的温度也达不到45℃。

温升(ΔT) 为了消除环境影响,可采用温升控制法。当电池的温升达到规定值后,立即停止快速充电。为了实现温升控制,必须用两只热敏电阻,分别检测电池温度和环境温度。 温度变化率(ΔT/Δt) 镍氢和镍镉电池充足电后,电池温度迅速上升,而且上升速率ΔT/Δt基本相同,当电池温度每分钟上升1℃时,应当立即终止快速充电,这种充电控制方法,近年来被普遍采用。应当说明,由于热敏电阻的阻值与温度关系是非线性的,因此,为了提高检测精度应设法减小热敏电阻非线性的影响。

最低温度(Tmin) 当电池温度低于10℃时,采用大电流快速充电,会影响电池的寿命。在这种情况下,充电器应自动转入涓流充电,待电池的温度上升到10℃后,再转入快速充电。

(4)综合控制

上述各种控制方法各有优缺点。为了保证在任何情况下,均能准确可靠地控制电池的充电状态,目前快速充电器中通常采用包括定时控制、电压控制和温度控制的综合控制法。

蓄电池作为能量的转存装置或备用电源被广泛地应用于各种自动化设备中。使用普通的充电器对蓄电池充电容易发生过充电或充电不足的现象。过充电,可使蓄电池发热,电解液失水;充电不足,可使蓄电池内化学反应不充分,并且长期充电不足会导致蓄电池容量下降。以上两种情况都会降低蓄电池的使用寿命。由此可见,充电器性能的好坏直接影响到蓄电池的使用效果和使用寿命。本文采用恒流限压、实时监测的智能控制充电方法设计了一种对讲机所

使用的8.4V3Ah的镍镉智能充电器。同一原理完全可设计出用于其他不同类型、不同容量的蓄电池的充电器。

1 镍镉电池的发展及特点

1899年,Waldmar Jungner首先在开口型镍镉蓄电池中使用了镍极板,同时,Thomas Edison发明了用于电动车的镍铁电池。但是,由于当时这些碱性蓄电池的极板材料比其他蓄电池的材料贵得多,其实际应用受到了极大的限制。直到1932年,镍镉电池经历了最重要的改进:科学家在镍电池中开始使用活性物质。1947年,密封型镍镉电池研制成功。 镍镉电池的特点是效率高、循环寿命长、能量密度大、体积小、重量轻、结构紧凑、不需要维护,因此在工业和消费产品中得到了广泛应用。

2 镍镉电池的充电方式及充电特性曲线

充电器能否达到最佳充电效果由所选择的充电方式和充电特性曲线共同决定。近年来,蓄电池充电器大致可以分为连续电流充电和脉冲电流充电两大类。

连续电流充电因放电容量受到电池接受能力的限制和受到在充电过程中电池极化所产生气体的阻力,使得在大电流充电的情况下,电池放电容量下降和电池发热;若用小电流充电,虽可克服这个缺点,但充电时间过长。

脉冲电流充电在充电过程中是断断续续的。采用这种充电方式可以提高电池的接受能力、消除电极化作用、缩短充电时间、增大放电容量、减少电池发热和提高充电效率。但是目前的脉冲充电器的充电脉冲宽度和间歇时间都是固定的,不能根据充电状态改变充、放电的时间参数以及适应快速充电的要求,因此充电效果受到了限制。

结合以上两点,本设计采用了一种更好、更优化的充电方式,即恒流限压与实时监测的智能控制充电方式。该充电方式对主回路开关电源进行数字控制输出电压和电流。

镍镉电池充电特性曲线如图1所示。当恒定电流充入刚放完电的电池时,由于电池内阻产生压降,电池电压很快上升至A点。此后,电池开始接受电荷,电池电压以较低的速率持续上升。在AB之间,电化学反应以一定的速率产生氧气,同时氧气也以同样的速率与

氢气化合,使电池内部的温度和气体压力都很低。经过一定时间至C点,电解液中开始产生气泡,这些气泡聚集在极板表面,使极板的有效面积减小,电池的内阻抗增加,电池电压开始较快上升。这是接近充足电的信号。

充足电后,充入电池的电流不是转换为电池的储能,而是在正极板上产生氧气超电位。氧气是由氢氧化钾和水组成的电解液电解而产生的,不是由氢氧化镉还原为镉而产生的。由于从大量的氢氧离子中比从很少的氢氧化镉中更容易分解出氧气,所以电池内的温度急剧上升,使得电池电压下降。因此电池电压曲线出现峰值D点。电解液中,氧气的产生和复合是放热反应,电池过充电即E点,不停地产生氧气,从而使电池内的温度和压力升高。 3 硬件电路

该智能充电器采用单片机AT89C2051进行控制,使用了开关电源及A/D 、D/A等技术,实现了镍镉电池的智能充电。其硬件电路如图2所示,整个电路分为开关电源部分和以单片机为主的控制电路部分。

此开关电源属于复合式开关电源,采用TL431的精密基准和PC817组成反馈电路。整个工作过程:交流输入经滤波、整流后成为直流高压,再由功率开关管斩波、高频变压器降压后得到高频矩形波电压,最后经过输出整流滤波器,获得所需要的直流输出电压。此开关电源达到了:交流输入电压范围为90~270V,能同时输出+5V(作为控制部分电源)及4.4~1

1.3V(主回路)的电压,输出电流为1A。其电路如图3所示。

控制电路部分主要由AT89C2051、ADC TLC0832、运放LM358及数字电位器X9C102、分压电阻、电流采样电阻组成。单片机对正在充电的电池进行实时电压、电流取样,经A/D转换后输入单片机。单片机根据电池不同的充电状态采取不同的充电算法,通过数字电位器对开关电源的输出电压进行控制,通过改变电池组端电压来达到控制充电过程的目的。

电路接上蓄电池后,充电过程开始,当检测到电池电压在正常范围内时,充电器软启动,充电电压、电流逐渐增加到额定恒定充电电流值,进行恒流充电,“正充电” LED灯闪烁,同时开始计时。此后不断检测电池电压,当电池电压大于或达到规定的最大值(该电池规定的最大值为10.5V)或充电时间等于5小时后,单片机发出指令,减小数控输出值大小,使充电电流减小,转为涓流充电(0.1A),“已充满”LED指示灯亮。这样就避免了因电池温升过快或严重极化,影响充电质量、降低蓄电池的使用寿命甚至产生事故,从而快速、安全、高质量地完成充电过程。

4 软件智能控制

在程序的初始阶段首先应对单片机进行初始化,然后判断电池是否连接正确,根据电池电压判断应该进入哪一个充电阶段,即恒流或者涓流充电方式。恒流方式:不断检测流过电

池的电流是否达到恒定电流(1A),如果小于1A则抬高电池两端的电压使之达到1A(在电池两端电压小于电池的最大充电电压10.5V的前提下)。涓流方式:在电池两端电压达到最大值后进入涓流充电模式。程序结构图如图4所示。

本文提出一种恒流限压、智能控制的充电方案,能很好地解决镍镉蓄电池组在充电过程中存在的过充电、充电不足、发热等问题。该充电器已批量生产并投入使用,效果令人满意。同时,在已有的基础上针对不同种类的电池,只要根据不同电池的最佳充电曲线对控制器中的程序进行相应的调整,就能对不同类型的电池进行充电。

参考文献

1 沙占友.新型单片开关电源的设计与应用[M].北京:电子工业出版社,2001:1~129 2 朱小同,赵桂先.蓄电池快速充电的原理与实践[M].北京:煤炭工业出版社,1996:8~136

3 刘贤兴,李 众.新型智能开关电源技术[M].北京:机械工业出版社,2003:50~89

4 王鸿麟,钱建立,周晓军.智能快速充电器设计与制作[M].北京:科学出版社,1998:133~180

5 杨帮文. 实用电池充电器与保护器电路集锦[M]. 北京:电子工业出版社,2000:26~96

6 何希才.新型开关电源及其应用[M]. 北京:水利电力出版社,1996:64~164

7 张占先,蔡宣三.开关电源的原理与设计[M],北京:电子工业出版社,2001:43~53

可编程快速充电管理芯片MAX712/ MAX713及其应用

摘要:本文介绍MAXIM公司生产的可编程电池充电管理芯片MAX712/ MAX713,利用MAX712/ MAX713系列芯片及简单外围电路可设计低成本的单多节镍氢电池或镍镉电池充电器,非常适用于便携式电子仪器的紧凑设计。本文将在介绍MAX712/ MAX713芯片的特点、功能的基础上,给出典型充电电路的设计方法及应用

该充电芯片设计便携式仪器的体会。

1. 引言

MAX712/ MAX713系列是MAXIM公司生产的快速充电管理芯片,MAX712/ MAX713芯片适合1~16节镍氢电池或镍镉电池的充电需要,同时根据不同的应用提供了Plastic DIP、Narrow SO和DICE几种可选封装形式,利用该芯片设计的充电器外围电路及其简单,非常适合便携式电子产品的紧凑设计需要。MAX712/ MAX713可通过简单的管脚电压配置进行编程,实现对充电电池支数和最大充电时间的控制,内部集成的电压梯度检测器、温度比较器、定时器等控制电路,根据电压梯度、电池温度或充电时间的检测结果,自动控制充电状态,从涓流充电转到快速充电(低温时)或从快速充电转到涓流充电,以确保电池不受损害。充电状态识别可由输出的LED指示灯或与主控器接口实现,具有自动从快速充电转为涓流充电、低功耗睡

眠等特性。快速充电速率从C/4 to 4C可设定,涓流充电速率为C/16。

2. 功能特性

MAX712/ MAX713的特性相似,差别在于MAX712在检测到dv/dt变为零时终止快速充电模式,而MAX713是在检测到dv/dt变为负时终止快速充电模式;MAX712/ MAX713都能充电1~16节,具有线性或开关模式功率控制,对于线性模式,在蓄电池充电时能同时给蓄电池的负载供电;具有根据电压梯度、温度或时间三种方式截止快速充电,并自动从快速充电转到涓流充电;当不充电时在蓄电池上的最大漏电流仅5m

A。

3. 器件封装及型号选择

MAX712/MAX713的引脚功能描述如下:

² VLIMIT:设置单节电池最大电压,电池组(BATT+—BATT-)的最大电压Em不能超过VLIMIT×(电池数量n),且VLIMIT不能超过2.5V,当VLINIT接V+时,Em=1.65n(V),通常将VLIMIT与VREF连接。

² BATT+:电池组正极。

² PGM0:可编程引脚。

² PGM1:可编程引脚。通过对PGM0和PGM1脚电压的设定可设置充电电池的的数量,从1~16。

² THI:温度比较器的上限电压。当TEMP电压大上升到THI时,快速充电结束。

² TLO:温度比较器的下限电压。充电初始,当TEMP电压低于TLO时快速充电被禁止,直到TEMP电压高于

TLO。

² TEMP:温度传感器输入。

² FASTCHG:快速充电状态输出。

² PGM2:可编程引脚。通过对PGM2和PGM3脚电压的设定可设置快速充电的最大允许时间,从33min~264

min.

² PGM3:可编程引脚。除设定最大允许时间外,还可设定快速充电和涓流充电的速率。

² CC:恒流补偿输入。

² BATT-:电池组负极

² GND:系统地。

² DRV:驱动外围“PNP”。

² V+:分路调节器。V+对BATT-电压为+5V,为芯片提供分路电流(5~20mA)。

² REF:参考电压输出2V。

4.编程应用

4.1.电池数量的设定

在应用中MAX712/MAX713提供可编程引脚PGM0和PGM1,通过对两者采取不同的电压连接方式即可设置充电电池数量(见图4-1), 1~16节。而实际充电电池的数量也必须与由PGM0和PGM1编程确定的数

量一致,否则利用电压梯度检测充电功能将可能失去意义。

4.2. 充电速率及时间的设定

通过对PGM2和PGM3引脚的编程电压设置可设定电池的充电速率和充电时间(参见表4-1、4-2)。从表4-1中可以看出,对于MAX712/MAX713来说,最大允许快速充电时间为264分钟,因此其最小充电速率

将不能低于C/4。快速充电电流可按以下公式计算:

而涓流充电电流ITRICKLET一般为C/16,ITRICKLET与IFAST的关系如表4-3所示。此外,鉴于电池本生的固有特性(将电能转化为化学能存储),充电时间效率通常在80%左右,即,当以C/2速率充电时,

理论上充电时间为2小时,而实际时间通常为2小时30分钟左右。

5. 工作原理

5.1. 利用电压梯度充电

图5-1反映了利用电压梯度控制快速充电的全过程。在时间1内,MAX712/MAX713从电池吸收很小的电流(5mA左右),当接通充电电源后,开始对电池以C/16的速率进行涓流充电(因为电池电压低于0.4V),电池电压开始上升(时间2)。当单节电池电压上升到0.4V以后,快速充电正式开始(时间3),电池电压和电池温度持续上升,充电电流保持在设定值不变。当电池电量达到额定值后,电池组电压开始下降,即dv/dt为零(MAX712)或为负值(MAX713)时系统从快速充电转到涓流充电(时间4),此时电池电压继续下降到一定值后保持不变,电池温度也随之降低。当充电电源从电路中移开后负载和MAX712/MAX713从电池吸收电流(时间5)。为保证电路能准确、可靠地工作,在选择直流充电电源DC时,DC必须大

于6V且在线性模式下要求DC必须比电池组最大电压高出至少1.5V(开关模式2V)。

5.2. 利用电池温度充电

概述:

CN3058是可以对单节磷酸铁锂可充电电池进行恒

流/恒压充电的充电器电路。该器件内部包括功率

晶体管,应用时不需要外部的电流检测电阻和阻

流二极管。CN3058只需要极少的外围元器件,并

且符合USB总线技术规范,非常适合于便携式应 用的领域。热调制电路可以在器件的功耗比较大 或者环境温度比较高的时候将芯片温度控制在安 全范围内。内部固定的恒压充电电压为3.6V,也 可以通过一个外部的电阻调节。充电电流通过一 个外部电阻设置。当输入电压(交流适配器或者 USB电源)掉电时,CN3058自动进入低功耗的睡 眠模式,此时电池的电流消耗小于3微安。其它功 能包括输入电压过低锁存,自动再充电,电池温 度监控以及充电状态/充电结束状态指示等功能。 CN3058采用散热增强型的8管脚小外形封装 (SOP8)。

应用:

矿灯

磷酸铁锂电池应用

铅酸蓄电池

各种充电器

特点:

可以用USB口或交流适配器对单节磷酸铁锂 可充电电池充电

输入电压范围:4V 到 6V

片内功率晶体管

不需要外部阻流二极管和电流检测电阻

恒压充电电压3.6V,也可通过一个外部电阻 调节

为了激活深度放电的电池和减小功耗,在电 池电压较低时采用小电流的预充电模式

可设置的持续恒流充电电流可达500mA 采用恒流/恒压/恒温模式充电,既可以使充

电电流最大化,又可以防止芯片过热

电源电压掉电时自动进入低功耗的睡眠模式 充电状态和充电结束状态双指示输出 C/10充电结束检测

自动再充电

电池温度监测功能

封装形式SOP8

无铅产品

图5-2显示了典型的利用电池温度变化控制充电的过程,在本例中电池温度比较低(如刚从寒冷的室外环境拿入室内)。在时间1内,MAX712/MAX713从电池吸收很小的电流(5mA左右)。当接通充电电源后,开始对电池以C/16的速率进行涓流充电(因为电池温度低于电压),电池温度逐渐升高(时间2)。当电池温度对应的电压TEMP升高到TLO时,系统自动转入快速充电,此时充电电流保持恒定,电池温度继续升高(时间3)。当电池温度对应的电压TEMP升高到THI时,停止快速充电,又转为涓流充电,电池温度也

随之降低(时间4)。

利用温度控制的原理是:通过MAX712/MAX713内部的温度比较器对TEMP的输入电压和TLO、THI设定的电压进行比较,即可控制其充电过程。当TEMP电压低于TLO或高于TTHI时只能涓流充电,反之可进行快速充电。在应用中常用热敏电阻作为温度传感器,并通过分压电阻实现,如图5-3所示。分压电阻的阻

值可根据参数计算。

在本例中监测的是电池的相对温升,当T1、T2、T3采用相同特性的热敏电阻时,此温升范围将不随环境温度的影响,如果只监测电池的绝对温度可去掉T2和T3;如允许电池在低温时可快速充电,则需将R5、

T3和0.022uF电容去掉,并且将TLO和BATT-相连。

6. 应用实例

图6-1所示,由MAX713构成的10节1.2V 2000mAh的镍氢电池充电电路,它利用的是电压梯度监测充电,选择直流充电电源DC为16~24V;快速充电时间为264分钟,快速充电电流为IFAST=500mA;涓流充电电流ITRICKLET=IFAST/8 =500/8 = 62.5Ma。图示C1、C6为滤波电容,R1为限流电阻,设Dcmin=15V,

用R1将V+端的电流限定在5~20mA范围内,

涓流充电或停止充电时LED熄灭。

在一般应用中,当充电电池数量超过5~6节或充电电压比较高时,为了减小器件发热,应考虑采用开关模式(参考图6-2),鉴于在本应用中要求在充电期间同时还要对电池的负载供电,因此只能采用线性模式,而采用减小充电电流来控制器件的发热,但在设计中还需考虑Q1和Q2的散热问题,如增加散热片面

积等。

7.结束语

本文介绍的采用MAX713芯片设计的12V镍氢电池组充电电路比较简单适用,整个充电过程及状态显示均由MAX713单独实现,整个电源管理模块简单可靠,只是由于电池组数量较多而且又只能采用线性模式,因此对于Q1、Q2有一定的发热量,但通过加装散热器后得到了改善,现该电路已经在国内某便携式测量仪

器中广泛应用,工作稳定可靠。

镍镉电池也是较早出现的电池。最早应用于手机、笔记本电脑等设备的电池种类,它具有良好的大电流放电特性、耐过充放电能力强、维护简单。镍镉电池是由两个极板组成,一个是用镍做的,另一个是镉做的,这两种金属在电池中发生可逆反应,因此电池可以重新充电。镍镉的优点是“结实”、价格便宜。缺点是镉金属对环境有污染,电池容量小,寿命短,所以镍镉电池是最低档的电池,有记忆效应,每次充电都须先放电,否则它的记忆功能将大大降低手机的充电量,只有将电池中的余电放净后再进行充电才能保持电池的充电量。此外,镉是有毒的,因而镍镉电池不利于生态环境的保护。众多的缺点使得镍镉电池已基本被淘汰出数码设备电池的应用范围。镍氢电池(Ni-MH Batteries)是早期的镍镉电池的替代产品,它是目前最环保的电池,不再使用有毒的镉,可以消除重金属元素对环境带来的污染问题。镍氢电池具有较大的能量密度比,这意味着可以在不为数码设备增加额外重量的情况下,使用镍氢电池能有效地延长设备的工作时间。镍氢电池另一个优点是:大大减小了镍镉电池中存在的“记忆效应”,这使镍氢电池可以更方便地使用。


相关文章

  • 镍氢电池的原理及与镍镉电池的比较_张鹏
  • -16- 新特器件应用 国外电子元器件 1997年第5期1997年5月 镍氢电池的原理及与镍镉电池的比较 西安通信学院 张鹏孟进许英 摘要:镍氢电池是一种性能非常优异的新型电池, 在不久的将来, 它一定会取代目前大量应用的镍镉电池.本文详细介绍了镍氢电池的基本工作原理.结构和特性, 还从多个方面对镍 ...

  • 锂电池可充电特性分析及锂电池维护
  • [摘 要]通过对锂电池的特征.锂离子电池充电特性.锂离子电池的使用介绍,让使用者对锂电池有一个正确的使用及保养. [关键词]锂离子电池:充电特性 移动通讯设备.笔记本电脑.手机.摄像机.数码相机.便携式医疗电子设备等所用的直流电源都是可充电二次电池,可充性二次电池种类较多.但根据有关部门的综合评价可 ...

  • 镍镉电池充电器
  • 关键字:锂电池:镍镉电池:充电器 引言 鉴于市场上镍镉电池和锂电池共存的局面,本文设计的充电器可以对这两种电池进行充电,对镍镉电池组采用脉冲充电方式,对锂电池组采用恒流充电方式,这是依据电池的不同机理而设计的,真正做到了一机两用,此为该充电器的创新点,也是设计的难点.充电器的宽屏LCD可以同时显示4 ...

  • 锂电池充电电路设计
  • 锂电池充电电路原理 锂电池充电电路设计 锂电池充电电路原理 一.锂电池与镍镉.镍氢可充电池: 锂离子电池的负极为石墨晶体,正极通常为二氧化锂.充电时锂离子由正极向负极运动而嵌入石墨层中.放电时,锂离子从石墨晶体内负极表面脱离移向正极.所以,在该电池充放电过程中锂总是以锂离子形态出现,而不是以金属锂的 ...

  • 关于手机锂电池的正确使用方法
  • 目前我国市场上的手机所使用的电池已经从镍氢镍镉电池向锂电池完成了过渡,但大部分人使用锂电池的方法还停留在使用镍氢镍镉电池的旧的错误的方法上.本文详细说明了目前使用最广泛的电池锂电池的正确使用方法,对使用误区的人数进行了抽样统计,重点说明的手机锂电池前三次充电正确方法. 引言 锂离子电池自1990年问 ...

  • 电池的分类和污染.处理
  • 环境化学论文 电池的种类和对环境的污染 班级:11-2 学号:11055209 姓名:刘国强 电池的种类和对环境的污染 摘要:电池,是我们生活中的必需品.但是,当电池被使用过后,对其却没有采取恰当的处理方法进行回收.由此,随着引发的环境污染问题日益严重,这一问题也渐渐得到社会的广泛关注. 关键词:电 ...

  • 动力锂电池项目可行性报告
  • 动力锂电池项目可行性报告 项目背景: 动力锂电池是一种动力量密度.高安全可靠.长寿命.快充电电池,具有放电电压稳定.工作温度范围宽.自放电率低.储存寿命长(可反复冲放电3000次以上).无记忆效应及无公害等优点. 本项目属于高新技术项目中功能性能源材料的开发,是国家"863"计划 ...

  • 合并-锂电池基本知识
  • 磷酸铁锂电池基本生产工艺流程 磷酸铁锂电池与一般的锂离子电池生产工艺流程差不多,基本的流程为:配料,也就是混浆==>涂布==>辊压制片==>烘烤==>卷绕==>装壳==>电池烘烤==>注液==>圆柱电池封口(方形电池先化成,再封口)==>化成== ...

  • 电池结构与设计
  • 浅谈电池结构与设计 电池结构与组成 剖解电池结构与设计 锂电池设计基础 磷酸铁锂电池常规特性 EV&ESS电池相关应用 1 Quality assurance Designed to power you 一.电池结构及组成 1.电池结构图(图一) 2.电池组成 卷芯 正极片 负极片 ...

© 2024 范文中心 | 联系我们 webmaster# onjobs.com.cn