"负负得正"的乘法法则可以证明吗?

“负负得正”的乘法法则可以证明吗?

关于“负负得正”的乘法法则,是否可以通过证明来确认这条法则呢?这个问题历来

被老师们关注,有关专家对此也有各种看法,现将一篇新近文章转摘如下,供老师们参考。

“负负得正”的乘法法则可以证明吗?

(田载今,中学数学教学参考,2005年第3期)

有理数的乘法法则中包括“负负得正”一条,“两个负有理数相乘,结果(积)是一个正

有理数,其绝对值等于相乘两数的绝对值的乘积. ”例如,(-2)×(-3)=+6

这条法则对刚学它的人来说,不是很容易理解,多数人是把它硬记下来的. 记得水稻专家

袁隆平院士说过他学正负数时想不清这个法则的道理,就去向老师请教,老师说:“你记住

就行了. ”

编写教材时,大家为说明这条法则的道理想了很多办法, 有的教材以实际问题为背景来说

明, 有的教材从运算律的角度进行说明, 有的教材利用相反数的意义解释„„

教学中, 许多老师都反映这条法则的道理不是很好讲. 也有人考虑:是否可以通过证明来

确认这条法则呢?教科书中哪种说法可以算是对它的证明呢?

一种意见认为,“负负得正”有着丰富的实际背景,实践是检验真理的标准,这些实际背

景对这一 法则的证明. 例如,考虑这样的问题:如果水位一 直以每小时2厘米的速度下降,

现在水位在水文标尺刻度的A 处,3小时前水位在水文标尺的刻度在何处?为区分水位变化

方向,我们规定水位上升为正,下降为负;显然3小时前水位在水文标尺刻度的A 处上方

6cm 处,这可以表示为(-2)×(-3)=+6. 在许多情况下,都能找到类似这样的“负负

得正”的原型,因此,“负负得正”可以认为是通过客观实践检验证明的.

上面的意见中,以“实际事物的原型”替代“数学的证明”的做法是不妥的. 数学中的证

明不是个例的验证,数学不是物理、化学、生物那样的实验科学,它的命题具有一般性,不

能依靠检验个别案例完成对一般结论的证明,而需要依据已有的结论(定义、公理和定理等)

经合乎逻辑的推导来证明. 这些客观事物中的原型,只有在人为地规定问题中有关量的正负

意义之后,即经过数学化、抽象化之后,才具有了“负负得正”的意义,它们只能说明“负

负得正”有 实际背景,或作为应用“负负得正”法则的例子,而不能作为逻辑地推导这个

法则的根据.

另一种意见认为,可以通过运算律来证明“负负得正”这一法则,具体推导过程如下:

有了有理数的加法法则以及“正正得正”,“正负得正”的乘法法则之后,由分配律,有

(-1)×(-1)=(-1)×(1-2)

=(-1)×1-(-1)×2=-1-(-2)=-1+2=1 .

进而由交换律和结合律可以推出任何两个负数相乘的结果, 例如,

(-2)×(-3)=(-1)×2×(-1)×3=(-1)×(-1)×2×3 =[(-1)

×(-1)]×(2×3)=1×6=6.

于是, 得出“负负得正”这一法则.

笔者认为, 上面的意见中在应用分配律时, 用到了

(-1)×(1-2)=(-1)×1-(-1)×2. (1)

当确立了有理数的加法法则以及“正正得正”, “正负得负”的乘法法则, 而尚未确立

“负负得正”这一法则时, 这样做是缺乏根据的.

在这时, 我们可以确信(-1)×(2-1)=(-1)×2-(-1)×1. ⑵

这是因为⑵的左边为 (-1)×(2-1)=(-1)×1=-1.

⑵的右边为 (-1)×2-(-1)×1=-2-(-1)=-2+1=-1.

所以(2)的左边等于右边, 即(2)成立. 但是, 我们不能用类似的方法推出⑴成立, 因为⑴

的左边为 (-1)×(1-2)=(-1)×(-1),而(-1)×(-1)的法则此时尚未成立,

所以无法确定⑴的左边是否等于右边, 即此时分配律等于(-1)×(1-2)是否适用尚且存

疑。先确定运算法则, 后才能确定那些运算律成立, 是合乎逻辑顺序的做法. 这就是说, 只有当

(-1)×(-1)的结果确定后, 才能明确(1)成立. 因此, 像上面那样用分配律推导“负负得

正”的法则有循环论证之嫌.

还有一种意见认为, 如果在确立了通常的有理数加法法则后, 把有理数的乘法定义为一

种抽象的运算(即先不规定具体的乘法运算法则), 并从抽象代数角度约定有理数集合连同加

法、乘法运算构成一个域,那么就能推导出通常的具体的有理数乘法法则,自然也就推出了

“负负得正”.

笔者认为,事实上并非如此,请看下面反例.

我们这样规定有理数的乘法“⊗”:对于任意两个有理数a 、b 它们的“乘积”

a ⊗b=-ab 即这样“乘积”等于通常乘法的乘积的相反数.

可以验证,-1是这种“乘法”的单位元,对任意非零有理数x ,他的逆元是-,并且 (a⊗b) ⊗c=a⊗(b⊗c) (结合律); a⊗b=b⊗a (交换律);

a ⊗ (b+c )=a⊗b +a ⊗c (分配律)在有理数结合内都成立. 因此,有理数集合Q 连同

通常意义的有理数加法“+”、如上定义的有理数的乘法“⊗”,满足抽象代数中域的定义,

即{Q ,+,⊗}是一个域. 但是,这个“乘法”法则不是“负负得正”,而是“负负得负. ”

上述反例证明. 在确立了有理数通常 的加法法则,并约定有理数集合连同加法、乘法

运算构成一个域的条件下,并不能一定得出“负负得正”的乘法法则.

第四种意见证明,如果先确立通常的有理数的加法法则以及两个非负有理数的乘法(及

算术中的乘法)法则,然后再把含有负因数的有理数乘法定义为一种抽象的运算,并把这种

抽象的乘法运算连同算术中的乘法合起来作为整个有理数的乘法法则,并且约定有理数集合

连同加法、乘法运算构成一个域,那么就能推导出通常的有理数乘法法则,自然也就推出了

“负负得正”. 具体推导过程如下:由于约定了有理数集合连同加法、乘法运算构成一个域,

根据分配律(-1)×1=(1-2)×1=1×1-2×1=1-2=-1, (-1)×2=(-1)×(1+1)=(-1)×1+(-1)×1=-1+(-1)=-2, (-1)×(-1)=(-1)×(1-2)=(-1)×1-(-1)×2=-1-(-2)=-1+2=1,

因此,(-1)×(-1)=1。在此基础上,由交换律和结合律可以推出任何两个负数

相乘的法则,即两个负有理数相乘,结果(积)是一个正有理数,其绝对值等于相乘两数的

绝对值的乘积.

这种意见中,作为推理依据除了确定加法法则及部分乘法法则外,还有“有理数集合

连同加法、乘法运算构成一个域”这个重要的约定,然而,在乘法法则尚未确定之前,就做

出这个约定在逻辑上是否合适呢?

应先完全确定有理数的加法和乘法的具体法则,才能根据域的定义判断{Q ,+,X }

是一个域,这是一种合乎逻辑的推理顺序. 而像上面那样先约定{Q ,+,X }是一个域,再

由约定去确定乘法法则的过程,恰与正常的推理顺序相反. 这样进行本未倒置的分析,目的

在于说明确定乘法法则的一种意图,即使新确定适用于Q 的乘法法则与已有的算术中的乘法

法则不矛盾,并且能使{Q ,+,X }是一个域. 这样的分析只能说明确定有理数乘法法则的

思想背景,而不能认为是合乎逻辑地导出了有理数的乘法法则.

0代数中类似上面那样说明某种规定的背景的例子有许多,例如下面的对规定a =1(a

≠0) 的解释.

m n m-n 我们已知,同底数幂除法法则,即a ÷a =a(a≠0,m 、n ∈N+,m>n)。如果这一法则

m m m-m 0m m 在a ≠0,m 、n ∈N+,m=n时也适用,则有a ÷a =a=a另一方面,显然有a ÷a =1。于是,

规定a =1(a≠0).

这里的“这一法则在a ≠0,m 、n ∈N+,m=n时也适用”事先缺乏根据,而只是一种假设,借以作为后面如何具体定义0指数幂的背景. 因为“这一法则在a ≠0,m 、n ∈N+,m=n时也适用”这个前提条件,在未定义0指数幂前还未落实,所以不能认为由这个空中楼阁可

0以推导a =1(a≠0) ,否则就犯了推理理由不真实和循环论证的逻辑错误. 这个问题与前面第四种意见的做法是类似的,类比他们可以帮助我们认识到第四种意见的做法并非证明.

综上所述,“负负得正”的乘法法则是数学中的一种规定(定义),它不能通过逻辑证明得出. 然而,对这个法则的规定既有客观世界中的实际背景,又有数学内部需要和谐发展的思想背景. 教学中适当地介绍这些材料,可以帮助学生认识乘法法则的由来和合理性,但是不能将这样做误认为证明这个法则. 0


相关文章

  • 初中数学概念大全
  • 初中数学概念大全 1.1有理数 1.1.1有理数的定义:整数和分数的统称. 1.1.2有理数的分类: (1)分为整数和分数.而整数分为正整数.零和负整数:分数分为正分数和负分数. (2)分为正有理数.零和负有理数.而正有理数分为正整数和正分数:负有理数分为负整数和负分数. 1.1.3数轴 1.1.3 ...

  • 多项式的乘法教案
  • 多项式的乘法教案 一.讲课内容:单项式与多项式相乘及多项式与多项式相乘. 二.重点.难点分析 : 1.多项式乘法法则,是多次运用单项式与多项式相乘的法则得到的.计算 时,先把 看成一个单项式, 是一个多项式,运用单项式与多项式相乘的法则,得到(a+b)(m+n)=a(m+n)+b(m+n),,然后再 ...

  • 有理数加减乘除法则
  • (1)有理数的加法法则: ① 同号两数相加,取相同的符号,并把绝对值相加: ② 绝对值不等的异号两数相加,取绝对值较大数的符号,并用较大的绝对值减去较小的绝对值: ③ 互为相反的两个数相加得0: ④ 一个数同0相加,仍得这个数. (2)有理数加法的运算律: 加法的交换律 :a+b=b+a:加法的结合 ...

  • 七年级数学上第一二章知识点(用)
  • 第一章 有理数 1.1 正数与负数 ①正数:大于0的数叫正数.(根据需要,有时在正数前面也加上"+") ②负数:在以前学过的0以外的数前面加上负号"-"的数叫负数.与正数具有相反意义. ③0既不是正数也不是负数.0是正数和负数的分界,是唯一的中性数. 注意:搞 ...

  • 有理数的乘法 课堂实录
  • 课堂实录 1.4.1 有理数的乘法(1) [情境导入] 师:前面我们已经学习了有理数的加法运算和减法运算,今天,我们开始研究有理数的乘法 运算.问题一:有理数包括哪些数?[来源:学科网ZXXK] 生:有理数包括正整数.正分数.负整数.负分数和零. 师:问题二:小学已经学过的乘法运算,属于有理数中哪些 ...

  • 有理数的乘除及乘方和混合运算
  • 有理数的乘除及乘方和混合运算 一.有理数的加减法回顾: (一).有理数加法法则 1.同号两数相加,取相同的符号,并把绝对值相加: 2.绝对值不相等的异号两数相加,去绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值: 3.互为相反数的两个数相加得0: 4.一个数同0相加,仍得这个数. (二). ...

  • 有理数乘除知识点及练习
  • 有理数乘除知识点归纳及练习 一.有理数乘法 1·有理数乘法的法则: 两数相乘,同号得正,异号得负,并把绝对值相乘:任何数同0相乘,都得0. 2·积的符号与负因数的关系: 几个不等于0的数相乘,积的符号由负因数的个数决定.当负因数有奇数个时,积为负:当负因数有偶数个时,积为正. 特别注意:第一个因数是 ...

  • 1.4 有理数的乘除法 (1)
  • 1.4 有理数的乘除法 1.4.1 有理数的乘法 第1课时 有理数的乘法法则 1.了解有理数乘法的实际意义. 2.理解有理数的乘法法则. 3.能熟练的进行有理数乘法运算. 阅读教材P 28-30,思考并回答下列问题. 知识探究 1. 2.通过有理数的乘法,进一步体会有理数运算包含两步思考:先确定积的 ...

  • 有理数的除法第一课时教案
  • 1.4.2 有理数的除法(一) 邵原二中 李敏 一.教学目标 1. 理解有理数除法法则,能熟练进行有理数的除法运算. 2. 通过法则的探究过程培养学生观察.归纳.概括.运算的能力. 3. 通过学生自己思索.判断,培养学生对数学的兴趣. 二.教学重难点 1.教学重点:探究有理数除法法则的形成过程,并熟 ...

© 2024 范文中心 | 联系我们 webmaster# onjobs.com.cn