离子发动机

看过星球大战的朋友都会对帝国的领结式战斗机有印象,而领结式(TIE)这个名字就来自双离子引擎的缩写(Twin Ion Engine),离子发动机在科幻作品中相当常见,经常被用作小型飞船的引擎。但和我们要介绍的其它种类发动机不同的是,离子发动机是一种现实的发动机,在今天,除了传统的化学火箭发动机外,就属离子发动机在宇航中的应用最广。

离子发动机的能量来自电力,可以来自太阳能电池板,或者核电池,通过从发动机尾部喷射出阳离子来推动飞船前进,所以离子发动机的驱动方式也被叫做电力驱动方式。

目前的离子发动机的最大缺点是推重比太小,其推力只相当于一张纸对于你的手的压力,显然这样的发动机无法让飞船和探测器脱离地球的重力场,也无法携带大的负载。但这个缺点却被这种发动机在太空中的表现弥补了,由于它优越的比冲量,它最终能把传统的化学火箭远远抛在身后。换句话说,就是尽管传统的火箭发动机有更高的推重比,但是却以很低的比冲量把燃料在很短的时间内消耗光;而现在的离子发动机能持续运转好多月甚至数年,这样,尽管推力小,但能通过长时间的积累达到更高的总冲量(impulse,等于力的平均值与它的作用时间相乘的结果),并最终达到更高的速度。

提到离子发动机,就不能不提美国的深空1号探测器。虽然离子发动机过去在卫星上经常使用,但都是作为辅助发动机,用于姿态调整或者轨道维持;而深空1号第一次将离子发动机作为主发动机使用。深空1号的离子发动机也是迄今为止将电能向推力转化效率最高的,在太空中运行寿命最长的,也是比冲量最高的,比冲量超过3,000秒。

深空一号

这种离子发动机追根溯源可以推到上个世纪的60年代,但到现在仍可以满

足美国宇航局的两个目标,也就是大大减少旅程时间和初重,以低成本更快地完成行星际任务。而1998年10月24日发射的深空1号探测器的任务除了测试12项先进科技(其中包括作为主发动机的离子发动机),就是为了完成探测小行星Braille和遥远的彗星Borrelly这样的行星际任务。在圆满完成任务后,深空1号于2001年12月18日报废。

上图就是深空1号的离子发动机结构图。离子发动机工作的核心就是对喷出的气体进行离子化,这一般是以电子轰击的方式来实现。通过加热和电场加速的方式将电子从阴极向阳极发射并进入放电室,气体推进剂氙同样被注入放电室,并在放电室施加磁场,增加氙原子和电子碰撞的可能性。碰撞后,氙原子核周围的部分电子将被击开,使得氙原子被电离,带上正电。这种离子非常活跃并且移动得非常快。

位于放电室后边的高压栅极将最后产生推力,方式是制造静电场,对离子生成拉力让它们向栅极方向加速,当它们通过后,速度将达到每秒31.5公里,并被集中成一个离子束最终从飞船尾部喷出去,下图就是深空1号尾部喷射出的蓝色离子火焰。

需要注意的是,在最后阶段一个中和器收集多余的电子并把它们注入喷出的离子束,这样可以避免飞船被带上大量的负电荷。

深空一号喷出的蓝色离子火焰

深空1号探测器是美国宇航局新千年项目的第一艘飞船,它的离子发动机产生0.09牛顿的推力,比冲量是3,300秒,每天消耗100克氙推进剂,在发动机全速运转的情况下,每过一天时速就增加25-32公里。深空1号由德耳塔火箭送上太空,然后由离子发动机推动。最初发动机只开动了4小时就突然停机,但后来恢复了运转并从此一直顺利运行,其最终的工作时间超过14,000小时,超过了此前所有传统火箭发动机工作时间的总和。而最初发射深空1号时,只计划运转200个小时以证明这种离子发动机是可行的。美国宇航局在地球上实验室中,和深空1号发动机一样的离子发动机甚至持续工作了更长的时间。

深空1号离子发动机的工作方式只是许多方式中的一种而已,这种方式被称为Ion Engine,作为离子发动机的代表,但使用电来产生离子浆并进一步推动飞船的具体方式还有好多:

霍尔推进器(Hall Thruster):利用轴向电场(axial electric field)来加速离子。一个辐射磁场和轴向电场相互作用来产生方位角霍尔电流(azimuthal Hall current),这个电流部分限制电子,让放电室中电离化效率比较高。这是个在苏联发展成熟的技术,一般用于卫星姿态稳定。

脉冲离子浆推进器(Pulsed plasma thrusters,PPT) :这种方式利用电流弧光,在固体推进剂(几乎总是用特氟隆)中产生快速而可靠的脉冲燃烧。PPT用于姿态控制效果很好,不过它是利用电来推进的系统中效率最低者之一,推进效率不到10%。

磁致离子浆动力推进器(Magnetoplasmadynamic thruster,MPD):也被称为洛伦兹力加速器(Lorentz-force Accelerator,LFA),它使用洛伦兹力(磁场和电场共同对带电粒子施加的力)来推动离子。MPD技术已经在实验室中被开发出来,但对它的商业兴趣很低,尽管在理论上它能产生极高的比冲量,因为它和Ion、Hall以及PPT方式不同,不使用电级,使用电级对离子进行加速的方式会使喷出的加速流被位于出口的电子源中性化,从而减低效率。MPD可以稳定运行,也可以脉冲运行。

可变比冲磁致离子浆火箭(Variable-specific-impulse magnetoplasma rocket,VASIMR):《北京青年报》2000年的一篇文章《打造星际飞船新引擎》把这个方式大大吹嘘了一番,认为是未来的方向。其实这种系统只是介于高推力低比冲的传统发动机和低推力高比冲的离子发动机之间的类型,可以在这两者之间调整参数。它也不用电极,而是在发动机前室使用电波来对氢推进剂进行离子化,然后在中室用磁场让其按自然频率绕磁场旋转,并使用无线电按照同一频率轰击,让温度上升到1千万K,再从后室把旋转变成轴向运动并释放出去。

最后,在离子化方面,日本设想用微波的方式来进行,用微波来击活推进剂

气体的电子,之后就是和深空1号一样把离子聚集成束并以静电场加速喷射出去。美国宇航局也采用了日本人的办法测试了新的微波离子发动机,并得出结论认为这种方式可以让发动机工作得更久。

上述各离子发动机的共同特点都是使用电能,利用电来直接电离,或者用电来制造磁场、电波、微波等,然后用它们来对推进剂进行离子化。所以它们也被称为电动推进发动机。

离子发动机超长时间的持续工作固然是优点,可以逐渐积累到很高的速度,但这同样是缺点,因为这要求超长时间的持续电力供应。这要求携带一个电力供应装置,目前的方式是使用一个巨大的太阳能电池板,不仅加重重量,而且随着探测器远离太阳,其效率也不断下降。

可以说,目前限制离子发动机发展的瓶颈因素就是电力,由于目前的太阳能电力系统缺乏效率,离子发动机的设计也就只能在低电能的基础上进行。如果我们想往外围的深空继续进发,或者运送更大的载重,就必须解决这个问题,获得更大的电能,至少应该达到以兆瓦计算的规模,而目前的深空1号最多仅仅能产生2.5千瓦,其中能提供给离子发动机的是2.1千瓦。

对太阳能电力系统进行改进以增加太阳能的利用效率,目前唯一可预期的方式是使用纳米技术,但并不知道需要多久才能发展出有用的技术。所以对于近期来说,唯一的选择就是使用核电系统,目前的技术也能让船载核电系统产生数百千瓦的电能,而且在不远的将来能发展到兆瓦的级别。

在核电系统中,来自原子反应堆的热量可以通过热电转化方式或者热离子转化方式变成电能,这种办法在上世纪60年代就被看作是可以让人类开拓太阳系的技术,而这个方式也有可能提供一个低成本的系统用于太空商业化。

核电系统比太阳能电力系统产生更高的电力,从而可以让离子发动机获得更高的推力,更高的比冲量。虽然推力仍旧比不上传统的火箭发动机那么高,但比冲量方面的优势则很明显,传统的化学燃料火箭发动机的比冲量是大约400秒上下,深空1号通过太阳能电力系统获得的比冲量在3,300秒左右,而利用核电系统的离子发动机可以达到13,000秒。

由于电力充足,核电系统可以让发动机和仪器分享和调配电力。当仪器不需要电力的时候,可以把全部的电力都送给发动机,但需要读取、检测、发送信息时,可以关掉发动机,把电力都调给仪器。这就提供了节约大量重量的可能性。而最大的好处自然是核电系统即使远离太阳也不影响工作效率,从而能在深空工作。

今年9月又有消息,对于核能的热电转换率又找到更好的办法可以进一步提高。美国加州大学在洛斯阿拉莫斯实验室(Los Alamos)工作的科学家利用一种称为传送波发动机(traveling-wave engine)的概念,可以将热量转换成电能的效率从过去的7%提高到18%。这意味着同样的核反应堆提供的电力能够增大一倍

半。

目前的核发电机是使用热电转换方式(thermoelectric)而新办法使用热声转换方式(thermoacoustic),具体做法是将氦气送过一叠322个不锈钢金属丝网制成的碟子,它们被叫做交流换热器,交流换热器同热源连接。而吸热设备则让氦气膨胀和收缩,这样的膨胀和收缩能产生强大的声波,这就如同大气层中闪电会导致热膨胀从而产生雷声一样。震荡的声波在发电机中就驱动活塞,产生电流。如前所述,用这样的热—声—电方式产生的电流比热—电方式效率更高。

在核电系统方面,我们需要取得的进展不仅是需要高效率,以获得兆瓦级别的电力,还需要制造出质量轻的电力系统。而最主要的缺点是需要对核辐射进行保护,以确保船上的成员和载货不受辐射以及来自反应堆的高热的影响,这将会增加船体重量。

不过就目前来说,还没有将离子发动机用于有人驾驶的飞船的计划,而是将继续用于探测器。近期配备离子发动机的探测器的任务包括到彗星采样,探测土星环,以及在木星的卫星欧罗巴上着陆。在这些远程飞行中离子发动机将比常规火箭发动机更快,例如,在2011年的Rosetta彗星任务中如果选择配备离子发动机的探测器,可以在大约5年左右的时间内取样并返回,而用传统的火箭发动机,单到达那颗彗星就需要花费9年时间。


相关文章

  • 美新型离子火箭推进器连续运转5年半 刷新世界纪录
  • 据美国宇航局网站报道,该部门研发的一种新型离子推进器已连续运转5年半,创造了一项新的世界纪录.它的测试时间是所有太空推进系统验证计划中最长的,已经达到了进入宇宙试验的标准.这种发动机的价值在于可以消耗极少的工质长期持续的在宇宙中提供推动力,实现超远距离宇航,也可用于长期在轨工作的卫星进行姿态调整.据 ...

  • 多弧离子镀技术及其应用
  • 2006年10月重庆大学学报(自然科学版) Oct.2006第29卷第10期 JoumalofChongqinguniversity(NQturQlScienceEdition) V01.29 No.10 文章编号:1000一582X(2006)10-0055-03 多弧离子镀技术及其应用+ 姜雪峰 ...

  • 现代特种加工技术的发展现状与展望
  • 编号: 课 程 论 文 题 目 现代特种加工技术的发展现状与展望 指导教师 王慧 学生姓名 学 号 专 业 机械设计制造及其自动化 教学单位 X州学院机电工程系 (盖章) 二〇一二年六月十九日 目录 摘 要 .............................................. ...

  • 中国兵器科学研究院宁波分院军转民项目介绍
  • 自己收集整理的错误在所难免仅供参考交流如有错误请指正!谢谢中国兵器科学研究院宁波分院节能环保项目介绍返回项目名称: 工业污水资源化成套设备 水资源短缺和水环境污染已成为制约我国经济可持续发展的瓶颈污水资源化是实现水资源可持续利用的必然选择工业污水的资源化(再生处理)循环利用既可减少废水排放总量.控制 ...

  • 钛合金的表面处理
  • 钛合金的表面处理 任何材料都有它的优缺点,为了进一步达到提高钛合金耐蚀性.耐磨性.抗微动磨损性.高温抗氧化性等目的,对钛合金进行表面处理是进一步扩大钛合金使用范围的有效途径,可以这么说目前对金属的表面处理方法几乎全部应用到了钛合金的表面处理上,包括金属电镀.化学镀.热扩散.阳极氧化.热喷涂.低压离子 ...

  • 氮化钛薄膜的制备及应用
  • 氮化钛薄膜的制备及应用 1.TiN 薄膜的制备方法 TiN 薄膜的研究工作早在20世纪60年代已开始进行,但因材料和器件制备上的困难,使研究工作一度转入低潮.后来随着薄膜制备技术的提高,国内外对TiN 薄膜的研究工作又开始活跃起来,制备方法也多样化了,目前已取得很大进展.TiN 薄膜的制备方法主要可 ...

  • 特种加工技术发展现状与展望-先进制造技术课程论文
  • 先 进 制 造 论 文 题目:先进制造技术 院系:周口科技机械工程数控 班级:数控 姓名:闫文磊 4班 时间:2010年12月25 日 先进成型技术 摘要 一. 特种加工技术在国际上被称为21世纪的技术,对新型武器装备的研制和生产, 起到举足轻重的作用.本文分别从激光加工技术.电子束加工技术.离子束 ...

  • UFO的 汞引擎及飞行原理- 飞碟探索--UFO研究,UFO...
  • UFO的 汞引擎及飞行原理 作者:赵山虎 日期:2007.2. 对于UFO的问题我们一直在讨论是否存在UFO.我的答案是UFO是存在.那么有谁创造,我的答案是古印度RAMA帝国和亚特兰帝斯,还有纳粹德国,还有美国.大家肯定说我没有证据是谎话.那么下面我就讲讲我所发现的UFO相关的一些内容. 1.UF ...

  • 日本的隼鸟号小行星探测器
  • 5月7日报载,日本宇宙航空研究开发机构拟计划利用即将返回地球的隼鸟号小行星探测器,对正在研发的小行星撞击地球预测系统的精确度进行测试.这再次引起了人们对隼鸟号航天器的关注. 飞向丝川小行星 隼鸟号是日本研制并于2003年5月9日用MV运载火箭成功发射的小行星取样航天器.其探测目标是丝川小行星.它在升 ...

© 2024 范文中心 | 联系我们 webmaster# onjobs.com.cn