人脸表情识别文献

JournalofDonghuaUniversity(Eng.Ed.)Vol.29,No.1(2012)

71

FacialExpressionRecognitionBasedontheQ-shiftDT-CWTandRotationInvariantLBP

CHENLei(陈

蕾)

*

SchoolofElectronics&InformationEngineering,SoochowUniversity,Suzhou215021,China

Abstract:Inthispaper,anovelmethodbasedondual-treecomplex

wavelettransform(DT-CWT)androtationinvariantlocalbinary

pattern(LBP)forfacialexpressionrecognitionisproposed.Thequartersampleshift(Q-shift)DT-CWTcanprovideagroupdelay

of1/4ofasampleperiod,andsatisfytheusual2-bandfilterbank

constraintsofnoaliasingandperfectreconstruction.Toresolveilluminationvariationinexpressionverification,low-frequency

coefficientsproducedbyDT-CWTaresetzeroes,high-frequency

coefficientsareusedforreconstructingtheimage,andbasicLBPhistogramismappedonthereconstructedimagebymeansofhistogramspecification.LBPiscapableofencodingtextureandshapeinformationofthepreprocessedimages.Thehistogramgraphsbuiltfrommulti-scalerotationinvariantLBPsarecombinedtoserve

asfeatureforfurtherrecognition.Templatematchingisadoptedtoclassifyfacialexpressionsforitssimplicity.Theexperimentalresultsshowthattheproposedapproachhasgoodperformanceinefficiencyandaccuracy.

Keywords:facialexpressionrecognition;dual-treecomplexwavelet

transform(DT-CWT);localbinarypattern(LBP);histogram;

similaritymeasureCLCnumber:TP391Documentcode:AArticleID:1672-5220(2012)01-0071-05

,WANGJia-jun(王加俊),SUNBing(孙兵)

Introduction

Facialexpressionrecognitionistoanalyzeanddetectthespecialexpressionstatefromgivenexpressionimagesorvideoframesandthentoascertainthesubject'sspecificinbornemotion,achievingsmarterandmorenaturalinteractionbetweenhumanbeingsandcomputers.Inhumantohumaninteraction,Mehrabiandiscoveredthatverbalcuesprovided7%ofthemeaningofthemessage;vocalcues,38%;andfacialexpressions,55%[1].Thusfacialexpressionprovidesmoreinformationabouttheinteractionthanthespokenwords.Automaticfacialexpressionrecognitionplaysanimportantroleinthedevelopmentofpatternrecognition,computervision,computergraphics,artificialintelligence,physiology,psychologyandsoon.Thestudyoffacialexpressionrecognitionhasfounditsvaluesineconomyandsociety.

Duetoitsapplicationsonsociologyandcomputervision,automaticfacialexpressionrecognitionhasattractedmoreandmoreattention.In1978,onthebasisoftheanatomy,EkmanandFriesenbuiltthefaceactioncodingsystem(FACS)thatassociatedfacialexpressionwithmusclemovement[2].ByFACS,encodingallpossiblefaceexpressionsbecameareality.Thenin1984,EkmanandFriesenputforwardthatthecombinationofspecificFACSactionunitscouldindicatefacialexpressionofemotions[3].Accordingtodifferentemotions,facialexpressionscanbedividedintosixtypes:happy,sad,surprise,fear,anger,anddisgust[4,5].Thesixbasictypesareagreedwidelybyresearchersandtreatedasthefacialexpressioncategories.Facialexpressionrecognitiongenerallyincludesthreestages:facedetectionandlocalization,thefacialfeatureextraction,andexpressionrecognition.Facialexpressionisverycomplex,forexample,iftheopeningmouthdoesnotrepresentsmilenecessarily,itmaybecryorsurprise,andthesamekindofexpressionsmayhavealotofdifferentways,suchashappy,

someareopenmouthcachinnation,someareclosedmouthsmile.Therefore,thefacialexpressionanalysisisadifficulttaskthatmainlyreflectsintheaccuracyexpressionfeatureextractionandvalidityofexpressionfeatureextraction.Researchershavemadesomeachievementsinfacialexpressionanalysis.Therearethefollowingmethods:principalcomponentanalysis(PCA),independentcomponentanalysis(ICA),lineardiscriminantanalysis(LDA),fisherlinearjudgingmethod,clusteringdiscriminantanalysis,elasticchartmatchingmethod,gaborwaveletmethod,andlocalprincipalcomponentanalysis,etc.Everyalgorithmmentionedhassomeeffects,butisnotverysatisfactoryandneedstobeimproved.

Inthispaper,abriefreviewofDT-CWTandlocalbinary

patterns(LBPs)isintroducedandanovelmethodforfacialexpressionfeatureextractionisproposed.Bythismethod,theapproximationcoefficientsderivedfromDT-CWTareresetand

detailscoefficientsarepreserved.InverseofDT-DWTis

employedbyusingmodifiedcoefficients,andthereconstructedimageisreferredasIdt.ThebasicLBPhistogramoforiginalimageIismappedontoIdtbymeansofhistogramspecification,andtheresultedimageisdenotedasILBP.ThefusionimageofIdtandILBPisIpro.Multi-scalespecialdecompositionisapplied

toIpro.ThecombinationofeachscalerotationinvariantLBPhistogramsisusedasfeatureforrecognition.Experimentsshowthatthemethodpresentedinthispaperhashigherrecognitionrateandefficiency.

1

TheQuarterSampleShift(Q-shift)

DT-CWT

Thediscretewavelettransform(DWT)ismostcommonlyusedinitsmaximallydecimatedform.Thisworkswellforcompressionbutitsusesforothersignalanalysisandreconstructiontaskshavebeenhamperedbytwomaindisadvantages:lackofshiftinvarianceandpoordirectionalselectivity.InRefs.[6,7],KingsburyintroducedanewformofDWT,whichgeneratedcomplexcoefficientsbyusingadual-treeofwaveletfilterstoobtaintheirrealandimaginaryparts.Thisintroduceslimitedredundancyandallowsthetransformtoprovideapproximateshiftinvarianceanddirectionallyselectivefilterswhilepreservingtheusualpropertiesofperfectreconstructionandcomputationalefficiencywithgoodwell-balancedfrequencyresponses.TheDT-CWThasreducedover

completenesscomparedwiththeshiftinvariantDWT(SIDWT),anincreaseddirectionalsensitivityovertheDWTthatisabletodistinguishbetweenpositiveandnegativeorientationsgivingsixdistinctsub-bandsateachlevel,theorientationsofwhichare

±15°,±45°,±75°.TheDT-CWTgivesperfect

reconstructionasthefiltersarechosenfromaperfectreconstructionbi-orthogonalset.TheQ-shiftDT-CWTisa

variantoftheearlierform,inordertogivethedual-tree

improvedorthogonalityandsymmetryproperties.TheQ-shift

versionoftheDT-CWTisshowninFig.1,inwhichallthe

filtersbeyondlevel1areevenlength,buttheyarenolongerstrictlylinearphase.Insteadtheyaredesignedtohaveagroup

Receiveddate:2011-09-28

*CorrespondenceshouldbeaddressedtoCHENLei,E-mail:chenlei@suda.edu.cn

delayofapproximately1/4sample(+q).Therequireddelaydifferenceof1/2sample(2q)isthenachievedbyusingthetimereverseofthetreeafiltersintreebsothatthedelaybecomes3q.Furthermore,thefiltercoefficientsarenolongersymmetric,anditisnowpossibletodesigntheperfect-reconstructionfiltersetstobeorthonormal,sothatthereconstructionfiltersarejustthetimereverseoftheequivalentanalysisfiltersinbothtrees.Henceallfiltersbeyondlevel1arederivedfromthesameorthonormalprototype

set.

Fig.2

Q-shiftDT-CWTonafacialexpressionimage:(a)original

image;(b)realpart;(c)imaginarypart;(d)magnitude

2

2.1

RotationInvariantLBPsandFacialExpressionFeatureExtraction

LBPs

TheLBPoperatorwasfirstintroducedbyOjalaetal.[8]

andwasprovedapowerfulmeansoftexturedescription.Theoperatorlabelsthepixelsofanimagebythresholdinga3×3neighborhoodofeachpixelwiththecentervalueandconsideringtheresultsasabinarynumber(seeFig.3foranillustration).Bydefinition,LBPoperatordiscardstheilluminationchanges,sinceitdependsonthegray-scale.This

makesitattractivesincedealingwithvaryingilluminationwhereinitisthemainconcerninour

research.

Fig.1

TheQ-shiftDT-CWT,givingrealandimaginarypartsof

complexcoefficientsfromtreeaandtreebrespectively(q=1/4sampleperiod)

NotethatfortheQ-shiftCWTeachcomplexwaveletbasis

iscenteredontheequivalentcomplexscalingfunctionbasis,andeachoftheseiscenteredbetweenapairofadjacentcomplexbasesfromtheprevious(finer)level.Inthisway,eachcomplexwaveletcoefficientatlevelkhastwocomplexchildrenlocatedsymmetricallyaboveitatlevelk-1.Fortheodd/evenDT-CWT,suchsymmetriesdonotoccur.Insummary,Q-shiftDT-CWThasthefollowing

properties:approximateshiftinvariance,gooddirectional

D)withgabor-likefilters(alsotrueselectivityin2-dimension(2-forhigherdimensionality,m-D),perfectreconstructionusing

Nshortlinear-phasefilters,limitedredundancy,efficientorder-computation,improvedorthogonalityandsymmetryproperties.

TheQ-shiftDT-CWTonafacialexpressionimageisshownin

Fig.

2.

Fig.3ThebasicLBPoperator(LBP=1+8+32+128=169)

LBPisnotrotationinvariant,whichisundesirableincertainapplications.ItispossibletodefinerotationinvariantversionsofLBP,andonesolutionisillustratedinFig.4,whereLBPROTrepresentsthevalueofonerotationinvariantpattern.Thebinaryvaluesofthethresholdedneighborhoodaremappedintoan8-bitwordinclockwiseorcounter-clockwiseorder.An

arbitrarynumberofbinaryshiftsisthenmade,untilthewordmatchesoneofthe36differentpatternsof“0”and“1”an8-bit

wordcanformunderrotation.Theindexofthematchingpatternisusedasthefeaturevalue,describingtherotationinvariantLBPofthisparticularneighborhood[9]

Fig.4Rotation-invariantversionofLBP

Thederivedbinarynumberscodifylocalprimitivesincludingdifferenttypesofcurvededges,spots,flatareas,etc.(asshowninFig.5),soeachLBPcodecanberegardedasamicro-pattern.ThelimitationofthebasicLBPoperatorisitssmall3×3neighborhoodwhichcannotcapturedominantfeatureswithlargescalestructures.Hencetheoperatorwaslaterextendedtouseneighborhoodofdifferentsizes[10].Usingcircularneighborhoodsandbilinearlyinterpolatingthepixelvaluesallowanyradiusandnumberofpixelsintheneighborhood.Figure6illustratessomeexamplesoftheextendedLBPoperator,wherethenotation(P,R)denotesaneighborhoodofPequallyspacedsamplingpointsonacircleofradiusofRthatformacircularlysymmetricneighborset.

TheLBPoperatorLBP(P,R)produces2Pdifferentoutputvalues,correspondingtothe2PdifferentbinarypatternsthatcanbeformedbythePpixelsintheneighborset.Ithasbeenshownthatcertainpatternscontainmoreinformationthanothers.Therefore,itispossibletouseonlyasubsetofthe2PLBPstodescribethetextureofimages.Ojalaetal.[8]calledthesefundamentalpatternsasuniformpatterns.AnLBPiscalleduniformifitcontainsatmosttwobitwisetransitionsfrom0to1orviceversawhenthebinarystringisconsideredcircular.Forexample,00000000,001110000,and11100001areuniformpatterns.Itisobservedthatuniformpatternsaccountfornearly90%ofallpatternsinthe(8,1)neighborhoodandforabout70%inthe(16,2)neighborhoodintextureimages.Accumulatingthepatternswhichhavemorethan2transitions

2

intoasinglebinyieldsanLBPoperator,denotedLBPriu(P,R),withlessthan2Pbins.Superscriptriu2standsforrotationinvariantuniformLBPandlabelingallremainingpatternswithasinglelabel[11,12].Forexample,thenumberoflabelsforaneighborhoodof8pixelsis256forthestandardLBPbut59for

riu2

LBP16,2.AfterlabelinganimagewiththeLBPoperator,ahistogramofthelabeledimagefl(x,y)canbedefinedasHi=

andhighfrequencycomponents(cDjs),withQ-shiftfilter.

(2)ZeroallthecoefficientsincAj,andpreservethecoefficientincDjs.EmployinverseofDT-CWTbyusing

modifiedcAjtogetherwithcDjs,referredasIdt.

(3)DerivethebasicLBPhistogramfromtheoriginalimageI.

(4)MapthebasicLBPhistogramofIontoIdt,bymeansofhistogramspecification.TheresultedimageisdenotedasILBP.

(5)ConvertbothIdtandILBPintofrequencydomainbyQ-shiftDT-CWTandthenfuseapproximationanddetails

coefficientsrespectively.AnimageIproisreconstructedbythefusedcoefficients.

(6)ThepreprocessedimageIproisdividedintomulti-level

sub-regions.TherotationinvariantLBPhistogramsarederivedfromthesesub-regions,normalizeddependingontheregion

sizes,andweightedaccordingtotheregionlocation.Thesehistogramsbuiltfromsub-blockscaneffectivelydescribefacial

expressionmicro-patterns.Theyarecombinedandservedas

featurevectorsforrecognition.

Figure7showslowandhighfrequencydirectionalcoefficientsofafacialexpression

image.

Fig.7

∑I(f(x,y)

x,y

l

=i),i=0,1,…,n-1,(1)

wherenisthenumberofdifferentlabelsproducedbytheLBP

operatorand

(2)I(A)=1,Aistrue,

0,Aisfalse.

Approximationanddetailscoefficients,withQ-shiftfilter:

(a)anoriginalimage;(b)approximationcomponent;(c)sixdirectionaldetailscomponents(magnitude)atlevel2;(d)detailscomponentsatlevel3

{

ThisLBPhistogramcontainsinformationaboutthedistributionofthelocalmicro-patterns,suchasedges,spotsand

flatareas,overthewholeimage,soitcanbeusedtostatisticallydescribeimagecharacteristics.

Aszeroingallthelowfrequencycoefficientsandpreservingthehighfrequencycoefficients,wecangetthereconstructedimageFig.8(b)byemployinginverseofDT-CWT.Figure

8(a)isthebasicLBPhistogramofFig.7(a),whichismappedontoFig.8(b),andFig.8(c)istheresultedimagebymeansofhistogramspecification.Figure8(d)isthefusionimageofFig.8(b)andFig.8(c)byapplyingDT-CWTfusion

method.

2.2Facialexpressionfeatrueextraction

Automaticfacialexpressionrecognitioninvolvestwovitalaspects:facialrepresentationandclassifierdesign.Facialrepresentationistoderiveasetoffeaturesfromoriginalfaceimagestoeffectivelyrepresentfaces.Theoptimalfeaturesshouldminimizewithin-classvariationsofexpressionswhile

maximizebetweenclassvariations.Ifinadequatefeaturesareused,eventhebestclassifiercouldfailtoachieveaccuraterecognition.InthispaperafeatureextractionalgorithmbasedontheDT-CWTandLBPhistogramsisproposed.Thewhole

processoffeatureextractionalgorithmiscarriedoutasfollows.

(1)Multi-levelDT-CWTisemployedtoconvertthegray-scalefacialimageIintotwocomponents,lowfrequency(cAj)

recognitionperformanceandfeaturevectorlength.Thusfaceimagesaretotallydividedinto32(1+2+4+9+16=32)regions.TheLBPfeaturesextractedfromeachsub-regionare

normalizedaccordingtothesub-regionsizesandthen

concatenatedintoasinglefeaturehistogramwiththelengthof416(32×26=416).

3

Fig.8

Imagefusion:(a)thebasicLBPhistogramofFig.7(a);(b)theimagereconstructedbyhighfrequencycoefficients;(c)resultedimagebymeansofhistogramspecification;(d)fusedimageforfeatureextraction

ExperimentalResults

Thecharacteristicvectorsareextractedusingthemulti-level

LBPhistogramsofthepreprocessedimageFig.8(d).AnLBPhistogramcomputedoverthewholefaceimageencodesonlytheoccurrencesofthemicro-patternswithoutanyindicationabout

theirlocations.Toalsoconsidershapeinformationoffacialexpression,faceimagesareequallydividedintosmallregionsR0,R1,…,RmtoextractLBPhistograms(asshowninFig.9(a)).TheLBPfeaturesextractedfromeachsub-region

are

Forexperimentsweusedimagesfromoneofthepopulardatabasesforfacialexpressionrecognition,theJAFFEdatabase.TheJAFFEdatabasecontains213imagesofsevenfacialexpressions(6basicfacialexpressionsand1neutral)posedby10Japanesefemalemodels.Foreachwoman,thereare2-4imagesofeveryfacialexpression.EachimageisaTIFFimagewithsize256×256and256graylevels.Alltheimagesaretakenagainstahomogeneousbackgroundwiththesubjectsinfrontalposition.Someimagesof6basicfacialexpressions(anger,disgust,fear,joy,sadness,andsurprise)areshowninFig.10andcorrespondingimagesprocessedbyQ-shiftDT-CWT

inFig.

11.

Fig.9

ThenormalizedLBPhistograms:(a)sub-regionsateachlevel,

riu2

(b)labeledimageofmicro-patterns,(c)LBP24,3normalized

histogramsof9sub-regions,(d)concatenatedhistogramserved

asfeatureforrecognition

concatenatedintoasingle,spatiallyenhancedfeaturehistogram.Theextractedfeaturehistogramrepresentsthelocaltextureandglobalshapeoffaceimages.Someparameterscanbeoptimizedforbetterfeatureextraction.OneistheLBPoperator,andtheotheristhenumberofregionsdivided.We

riu2

selecttheLBP24,3operator,bywhichwedefine26rotationinvariantmicropatterns,anddividethefaceimagesinto1,2,4,9,16regionsrespectively,givingagoodtrade-offbetween

Thecorrectlabelsofthetrainingsamplesarevery

importantforrecognition.Asseveralexpressionimagesaremarkedwronginthedatabase,wecorrectthembeforeourexperiment.Wedodifferentexperimentsusingdifferentcharacteristicsandtwomatchingmethodstoanalyzethefacerecognitionperformances.ThecomposedLBPhistogramsof32multi-scalesub-regionsareservedasfeaturesandthose

histogramsofsub-regionsinvolvingmouthoreyesaresetbigger

weight.Thiscanimprovetherecognitionaccuracyeffectively.Weadoptedtemplatematchingtoclassifyfacialexpressionsandemployedtwomethodsforsimilaritymeasure.

(1)Foreachexpressionofonesubject,wetestthreetimesinturnandtaketheaveragerecognitionrateasthefinalresult.Wetakeoneofthefacialexpressionimagesasatestsampleandtherestastrainingoneseverytime.Thereisnooverlapbetweenthetrainingandtestimages.WeemployEuropeandistancemeasurementforrecognition.

(2)Intraining,thehistogramsofexpressionimagesinagivenclassareaveragedtogenerateatemplateforthisclass.Anearest-neighborclassifierisusedasdissimilaritymetricfor

comparingatargetfacehistogramtothemodelhistogram.

ResultsobtainedfromthedifferentexperimentsarepresentedinTable1.Inthetablewecanseehowdifferentfeaturesandsimilaritymeasuresaffectrecognitionrate.

Table1

Recognitionratesobtained

Recognitionrate(6expressions)65%84.5%89%100%

Features/matchingmethod

LBPof16same-scalesub-regions/distance

betweentestingsampleandtrainingsamplesLBPof32multi-scalesub-regions/distance

betweentestingsampleandtrainingsamplesWeigtedLBPof32multi-scalesub-regions/

distancebetweentestandtrainingsamplesWeigtedLBPof32multi-scalesub-regions/

distancebetweentestsampleandclasscentre

weusedatemplatematchingtoclassifyfacialexpressionsforitssimplicity.ComparedtherecognitionresultsobtainedwithourfacialfeaturestothoseobtainedwithPCAandLDAapproaches(76.3%and69.5%forPCAandLDA,respectively),themethodproposedinthispaperclearlyshowedthebetterperformanceinrecognitionefficiencyandaccuracy.

References

[1]MehrabianA.SilentMessages[M].WadsworthPublishing

1971.Company,Inc.,Belmont,CA,

[2]EkmanP,FriensenW.FacialActionCodingSystem(FACS):a

TechniquefortheMeasurementofFacialMovement[M].PaloAlto:ConsultingPsychologistsPress,1978.

[3]EkmanP,FriensenW.UnmaskingtheFace[M].PaloAlto:

ConsultingPsychologistsPress,1984.[4]PanticM,RothkrantzLJM.FacialActionRecognitionforFacial

.IEEEExpressionAnalysisfromStaticFaceImages[J]

TransactionsonSystems,Man,andCybernetics,2004,34(3):1449-1461.

[5]PanticM,RothkrantzL.AutomaticAnalysisofFacial

Expressions:theStateofArt[J].IEEETransactionsonPattern

2000,22(12):1424-1445.AnalysisandMachineIntelligence,

[6]KingsburyNG.TheDual-TreeComplexWaveletTransform:a

NewEfficientToolforImageRestorationandEnhancement[C].ProceedingsinEUSIPCO98,Rhodes,Greece,1998:319-322.[7]KingsburyNG.ComplexWaveletsforShiftInvariantAnalysis

.JournalofAppliedandandFilteringofSignals[J]

ComputationalHarmonicAnalysis,2001,10(3):234-253.

[8]OjalaT,Pietik inenM,HarwoodD.AComparativeStudyof

TextureMeasureswithClassificationBasedonFeatureDistributions[J].PatternRecognition,1996,29(1):51-59.[9]Pietik inenM,OjalaT,XuZ.Rotation-InvariantTexture

ClassificationUsingFeatureDistributions[J].PatternRecognition,2000,33(1):43-52.[10]OjalaT,Pietik inenM,M enp T.MultiresolutionGray-Scale

andRotationInvariantTextureClassificationwithLocalBinaryPatterns[J].IEEETransactionsonPatternAnalysisandMachine

2002,24(7):971-987.Intelligence,

[11]AhonenT,HadidA,Pietik inenM.FaceRecognitionwithLocal

BinaryPatterns[C].Proceedingsofthe8thEuropeanConferenceonComputerVision,Prague,TheCzechRepublic,2004:469-481.[12]MooreS,BowdenR.LocalBinaryPatternsforMulti-viewFacial

ExpressionRecognition[J].ComputerVisionandImageUnderstanding,2011,115(4):541-558.

4Conclusions

InthispaperweanalyzedthebasicprincipleofDT-CWT

andLBPs.AnovelmethodbasedonQ-shiftDT-CWTand

rotationinvariantLBPwasproposedwhichwasefficientforrecognition.Q-shiftDT-CWTwasusedtoresolveillumination

variationinexpressionverification.RotationinvariantLBPswerecapableofdescribingtextureandshapeinformation.Toenhancethefacialrepresentation,wedividedthepreprocessedfacialimagesintoseveralsub-regionsofdifferentscales.The

LBPhistogramsofsub-regionswerenormalizeddependingon

theregionsizesandgaveadifferentweightdependingontheroleofthegivenregionsinrecognition.Forinstance,sincethemouthregionswereimportantforrecognition,ahighweightcouldbeattributedtothecorrespondingLBPhistograms.Thecombinedhistogramsthatcouldeffectivelydescribefacialexpressionmicro-patternswereservedasfeaturesfor

recognition.Ourmaingoalinthispaperwastoshowthehighdiscriminativepoweroftheproposedfacialfeatures.Therefore,


相关文章

  • 表情识别技术综述
  • CENTRAL SOUTH UNIVERSITY <脑与认知科学>调研报告 题 目 学生姓名 学号 专业班级 完成时间 人类表情识别技术 何伟峰 0918140119 智能科学与技术1401 2015/10/27 目录 人类表情识别技术 一.摘要: ................... ...

  • SCI翻译文献
  • 基于一种改进的CCA-PCA算法的2D-3D人脸识别方法 摘要:这篇文章给基于信息理论方法来编码和解码人脸图像的人脸识别提出了一个方法.在本文中,基于使用典型相关分析(CCA)的主成分分析(PCA)算法,我们提出一种2D-3D人脸匹配方法,来了解2D人脸图像和3D人脸数据之间的映射.此方法使得2D人 ...

  • 人脸识别系统论文
  • 摘 要 人脸识别因其在安全验证系统.信用卡验证.医学.档案管理.视频会 议.人机交互.系统公安(罪犯识别等)等方面的巨大应用前景而越来越成为 当前模式识别和人工智能领域的一个研究热点. 本文提出了基于24位彩色图像对人脸进行识别的方法,介绍的主要内容是图像处理,它在整个软件中占有极其重要的地位,图像 ...

  • 人脸识别技术综述
  • 人脸识别研究综述 摘要:论文首先介绍了人脸识别技术概念与发展历史,解释人脸识别技术的过程与优缺点:随后对近几年人脸识别技术的研究情况与一些经典的方法进行详细的阐述,最后提出人脸识别技术在生活中的应用与展望. 关键词:人脸识别研究现状应用与展望 一.概念 人脸识别技术是基于人的脸部特征,对输入的人脸图 ...

  • 浅谈人脸识别技术
  • 科技信息○IT论坛○SCIENCE&TECHNOLOGYINFORMATION2010年第11期 浅谈人脸识别技术 乔琪杜文龙 (淮安信息职业技术学院江苏淮安 223003) [摘要]人脸识别技术是近10年在全球范围内迅速发展的一种有关计算机安全技术,是人体生物特征识别技术的一种.目前人脸识 ...

  • 南京林业大学毕业设计(论文)开题报告
  • 南京林业大学毕业设计(论文)开题报告 学生姓名 指导教师姓名 选题来源 选题名称 彭旭芳 李勇智 学 号 职 称 091101215 教授 专 业 信息与计算科学 理学院 毕业设计 □ 毕业论文 √ 所在学院 选题类型 科研课题 □ 生产实践 □ 其它 √ 基于复杂背景下的人脸检测 人脸检测(Fac ...

  • 人脸识别方法的综述与展望
  • 计算机与数字工程 第33卷24 人脸识别方法的综述与展望 艾英山 张德贤 (河南工业大学机电工程系 郑州 450052) Ξ 摘 要 综述了人脸识别理论的概念和研究现状,讨论了其中的关键技术和难点以及应用和发展前景,最后对人脸识别研究中的有关问题提出了我们的看法. 关键词:人脸自动识别 面部特征提取 ...

  • 模式识别在人脸识别中的应用
  • 模式识别在人脸识别中的应用 目前在人脸定位领域,几何模型匹配方法得到了广泛的使用. 本文对几何模型匹配方法进行了研究,提出了一套完整的人脸定位算法.在预处理部分,采用了特别的增强人脸特征与脸部皮肤之间对比度的方法及局域取阈值二值化方法,改进了预处理的效果.在图像分割部分,实现了经典的分合算法,并且使 ...

  • 生物特征识别研究进展
  • 生物特征识别研究进展 生物特征识别研究进展 摘要:随着科学技术的逐步发展,生物特征识别技术成了当今信息时代的一个研究热点.生物识别技术(Biometric Identification Technology)是指利用人体生物特征进行身份认证的一种技术.本文将主要介绍生物特征识别的工作原理.几种特征识 ...

© 2024 范文中心 | 联系我们 webmaster# onjobs.com.cn