太阳能手机充电器(毕业论文外文翻译+中英文对照)

电子与信息工程学院

本科毕业论文(设计)

外 文 文 献 翻 译

译文题目: Design of a Lead-Acid Battery Charging and

湖北科技学院本科毕业论文(设计):外文翻译

Design of a Lead-Acid Battery Charging and

Protecting IC in Photovoltaic System

ZENG De-you,LING Chao-dong,LI Guo-gang

(Yuanshun IC Design R&D Center, Huaqiao University, Quanzhou 362021, China)

Source: Microelectronic Device&Technology,June 2007

1.Introduction

Solar energy as an inexhaustible, inexhaustible source of energy more and more attention. Solar power has become popular in many countries and regions, solar lighting has also been put into use in many cities in China. As a key part of the solar lighting, battery charging and protection is particularly important. Sealed maintenance-free lead-acid battery has a sealed, leak-free, pollution-free, maintenance-free, low-cost, reliable power supply during the entire life of the battery voltage is stable and no maintenance, the need for uninterrupted for the various types of has wide application in power electronic equipment, and portable instrumentation. Appropriate float voltage, in normal use (to prevent over-discharge, overcharge, over-current), maintenance-free lead-acid battery float life of up to 12 ~ 16 years float voltage deviation of 5% shorten the life of 1/2. Thus, the charge has a major impact on this type of battery life. Photovoltaic, battery does not need regular maintenance, the correct charge and reasonable protection, can effectively extend battery life. Charging and protection IC is the separation of the occupied area and the peripheral circuit complexity. Currently, the market has not yet real, charged with the protection function is integrated on a single chip. For this problem, design a set of battery charging and protection functions in one IC is very necessary.

2.System design and considerations

The system mainly includes two parts: the battery charger module and the protection module. Of great significance for the battery as standby power use of the occasion, It can ensure that the external power supply to the battery-powered, but also in the battery overcharge, over-current and an external power supply is disconnected the battery is to put the state to provide protection, the charge and protection rolled into one to make the circuit to simplify and reduce valuable product waste of resources. Figure 1 is a specific application of this Ic in the photovoltaic power generation system, but also the source of this design.

湖北科技学院本科毕业论文(设计):外文翻译

DC load

Figure1 Photovoltaic circuit system block diagram

Maintenance-free lead-acid battery life is usually the cycle life and float life factors affecting the life of the battery charge rate, discharge rate, and float voltage. Some manufacturers said that if the overcharge protection circuit, the charging rate can be achieved even more than 2C (C is the rated capacity of the battery), battery manufacturers recommend charging rate of C/20 ~ C/3. Battery voltage and temperature, the temperature is increased by 1 °C, single cell battery voltage drops 4 mV , negative temperature coefficient of -4 mV / ° C means that the battery float voltage. Ordinary charger for the best working condition at 25 °C; charge less than the ambient temperature of 0 °C; at 45 °C may shorten the battery life due to severe overcharge. To make the battery to extend the working life, have a certain understanding and analysis of the working status of the battery, in order to achieve the purpose of protection of the battery. Battery, there are four states: normal state, over-current state over the state of charge, over discharge state. However, due to the impact of the different discharge current over-capacity and lifetime of the battery is not the same, so the battery over discharge current detection should be treated separately. When the battery is charging the state a long time, would severely reduce the capacity of the battery and shorten battery life. When the battery is the time of discharge status exceeds the allotted time, the battery, the battery voltage is too low may not be able to recharge, making the battery life is lower.

Based on the above, the charge on the life of maintenance-free lead-acid batteries have a significant impact, while the battery is always in good working condition, battery protection circuit must be able to detect the normal working condition of the battery and make the action the battery can never normal working state back to normal operation, in order to achieve the protection of the battery.

3.Units modular design

3.1The charging module

Chip, charging module block diagram shown in Figure 2. The circuitry includes current limiting, current sensing comparator, reference voltage source, under-voltage

湖北科技学院本科毕业论文(设计):外文翻译

detection circuit, voltage sampling circuit and logic control circuit.

driver

V oltage amplifier

Limiting amplifier V oltage sampling comparator

Start amplifier Current sampling comparator R- power

Undervoltage detection circuit Logical module State level control Charging indicator

Power indicator

Figure2 Charging module block diagram

The module contains a stand-alone limiting amplifier and voltage control circuit, it can control off-chip drive, 20 ~30 mA, provided by the drive output current can directly drive an external series of adjustment tube, so as to adjust the charger output voltage and current . V oltage and current detection comparator detects the battery charge status, and control the state of the input signal of the logic circuit. When the battery voltage or current is too low, the charge to start the comparator control the charging. Appliances into the trickle charge state when the cut-off of the drive, the comparator can output about 20 mA into the trickle charge current. Thus, when the battery short-circuit or reverse, the charger can only charge a small current, to avoid damage to the battery charging current is too large. This module constitutes a charging circuit charging process is divided into two charging status: high-current constant-current charge state, high-voltage charge status and low-voltage constant voltage floating state. The charging process from the constant current charging status, the constant charging current of the charger output in this state. And the charger continuously monitors the voltage across the battery pack, the battery power has been restored to 70% to 90% of the released capacity when the battery voltage reaches the switching voltage to charge conversion voltage Vsam charger moves to the state of charge. In this state, the charger output voltage is increased to overcharge pressure V oc is due to the charger output voltage remains constant, so the charging current is a

湖北科技学院本科毕业论文(设计):外文翻译

continuous decline. Current down to charge and suspend the current Ioct, the battery capacity has reached 100% of rated capacity, the charger output voltage drops to a lower float voltage VF.

3.2 Protection Module

Chip block diagram of the internal protection circuit shown in Figure 3. The circuit includes control logic circuit, sampling circuit, overcharge detection circuit, over-discharge detection comparator, overcurrent detection comparator, load short-circuit detection circuit, level-shifting circuit and reference circuit (BGR).

Sampling circuit

Level conversion circuit Control logic circuit

Over discharge detection comparator Over-current detection comparator2 Load short detection circuit

Overcharge detection comparator Over-current detection circuit

Over-current detection comparator1

Figure3 Block diagram of battery protection

This module constitutes a protection circuit shown in Figure 4. Under the chip supply voltage within the normal scope of work, and the VM pin voltage at the overcurrent detection voltage, the battery is in normal operation, the charge and discharge control of the chip high power end of the CO and DO are level, when the chip is in normal working mode. Larger when the battery discharge current will cause voltage rise of the VM pin at the VM pin voltage at above the current detection voltage Viov, then the battery is the current status, if this state to maintain the tiov overcurrent delay time, the chip ban on battery discharge, then the charge to control the end of CO is high, the discharge control side DO is low, the chip is in the current mode, general in order to play on the battery safer and more reasonable protection, the chip will battery over-discharge current to take over the discharge current delay time protection. The general rule is that the over-discharge current is larger, over the shorter the discharge current delay time. Above Overcharge detection voltage, the

湖北科技学院本科毕业论文(设计):外文翻译

chip supply voltage (Vdd> Vcu), the battery is in overcharge state, this state is to maintain the corresponding overcharge delay time tcu chip will be prohibited from charging the battery, then discharge control end DO is high, and charging control terminal CO is low, the chip is in charging mode. When the supply voltage of the chip under the overdischarge detection voltage (Vdd

Protection module

Figure4 Protection circuit application schematic diagram

4.Circuit Design

Two charge protection module structure diagram, the circuit can be divided into four parts: the power detection circuit (under-voltage detection circuit), part of the bias circuit (sampling circuit, the reference circuit and bias circuit), the comparator (including the overcharge detection /overdischarge detection comparator, over-current detection and load short-circuit detection circuit) and the logic control part.

This paper describes the under-voltage detection circuit (Figure 5), and gives the bandgap reference circuit (Figure 6).

湖北科技学院本科毕业论文(设计):外文翻译

Biasing circuit Reference Bleeder circuit circuit difference amplifier Output circuit

Figure5 Under-voltage detection circuit

Amplifier

Amplifier

Figure6 A reference power supply circuit diagram

Battery charging, voltage stability is particularly important, undervoltage, overvoltage protection is essential, therefore integrated overvoltage, undervoltage protection circuit inside the chip, to improve power supply reliability and security. And protection circuit design should be simple, practical, here designed a CMOS process, the undervoltage protection circuit, this simple circuit structure, process and easy to implement and can be used as high-voltage power integrated circuits and other power protection circuit.

Undervoltage protection circuit schematic shown in Figure 5, a total of five components: the bias circuit, reference voltage, the voltage divider circuit, differential amplifier, the output circuit. The circuit supply voltage is 10V; the M0, M1, M2, R0 is the offset portion of the circuit to provide bias to the post-stage circuit, the resistance, Ro, determine the circuit's operating point, the M0, M1, M2 form a current mirror; R1 M14 is the feedback loop of the undervoltage signal; the rest of the M3, M4 and M5, M6, M7, M8, M9, M10, M11, M12, M13, M14, composed of four amplification comparator; M15, DO, a reference voltage, the comparator input with the inverting

湖北科技学院本科毕业论文(设计):外文翻译

input is fixed (V+), partial pressure of the resistance R1, R2, R3, the input to the inverting input of the comparator, when the normal working of the power supply voltage, the inverting terminal of the voltage detection is lost to the inverting terminal voltage of the comparator is greater than V+. Comparator output is low, M14 cutoff, feedback circuit does not work; undervoltage occurs, the voltage divider of R1, R2, R3, reaction is more sensitive, lost to the inverting input voltage is less than V when the resistor divider, the comparator the output voltage is high, this signal will be M14 open, the voltage across R into M at both ends of the saturation voltage close to 0V, thereby further driving down the R1> R2, the partial pressure of the output voltage, the formation of the undervoltage positive feedback. Output, undervoltage lockout, and plays a protective role.

5. Simulation results and analysis

The design of the circuit in CSMC 0.6 μm in digital CMOS process simulation and analysis of the circuit. In the overall simulation of the circuit, the main observation is that the protection module on the battery charge and discharge process by monitoring Vdd potential and Vm potential leaving chip CO side and DO-side changes accordingly. The simulation waveform diagram shown in Figure 7, the overall protection module with the battery voltage changes from the usual mode conversion into overcharge mode, and then return to normal working mode, and then into the discharge mode, and finally back to normal working mode. As the design in the early stages of the various parameters to be optimized, but to provide a preliminary simulation results.

湖北科技学院本科毕业论文(设计):外文翻译

Figure7 Overvoltage and under-voltage protection circuit simulation waveform

6.Conclusion

Designed a set of battery charging and protection functions in one IC. This design not only can reduce the product, they can reduce the peripheral circuit components. The circuit uses the low-power design. This project is underway to design optimization stage, a complete simulation can not meet the requirements, but also need to optimize the design of each module circuit.

湖北科技学院本科毕业论文(设计):外文翻译

光伏系统中蓄电池的充电保护IC 电路设计

曾德友,凌朝东,李国刚

(华侨大学 元顺集成电路研发中心,福建 泉州 362021)

来源:微电子器件与技术 2007年第6期

1. 引言

太阳能作为一种取之不尽、用之不竭的能源越来越受到重视。太阳能发电已经在很多国家和地区开始普及,太阳能照明也已经在我国很多城市开始投入使用。作为太阳能照明的一个关键部分,蓄电池的充电以及保护显得尤为重要。由于密封免维护铅酸蓄电池具有密封好、无泄漏、无污染、免维护、价格低廉、供电可靠,在电池的整个寿命期间电压稳定且不需要维护等优点,所以在各类需要不间断供电的电子设备和便携式仪器仪表中有着广泛的应用。采用适当的浮充电压,在正常使用(防止过放、过充、过流) 时,免维护铅酸蓄电池的浮充寿命可达12~16年,如果浮充电压偏差5%则使用寿命缩短1/2。由此可见,充电方式对这类电池的使用寿命有着重大的影响。由于在光伏发电中,蓄电池无需经常维护,因此采用正确的充电方式并采用合理的保护方式,能有效延长蓄电池的使用寿命。传统的充电和保护IC 是分立的,占用而积大并且外围电路复杂。目前,市场上还没有真正的将充电与保护功能集成于单一芯片。针对这个问题,设计一种集蓄电池充电和保护功能于一身的IC 是十分必要的。

2. 系统设计与考虑

系统主要包括两大部分:蓄电池充电模块和保护模块。这对于将蓄电池作为备用电源使用的场合具有重要意义,它既可以保证外部电源给蓄电池供电,又可以在蓄电池过充、过流以及外部电源断开蓄电池处于过放状态时提供保护,将充电和保护功能集于一身使得电路简化,并且减少宝贵的而积资源浪费。图1是此Ic 在光伏发电系统中的具体应用,也是此设计的来源。

图1 光伏电路系统框图

免维护铅酸蓄电池的寿命通常为循环寿命和浮充寿命,影响蓄电池寿命的因素有充电速率、放电速率和浮充电压。某些厂家称如果有过充保护电路,充电率可以达到甚至超过2C(C为蓄电池的额定容量) ,但是电池厂商推荐的充电率是

湖北科技学院本科毕业论文(设计):外文翻译

C/20~C/3。电池的电压与温度有关,温度每升高1℃,单格电池电压下降4 mV,也就是说电池的浮充电压有负的温度系数-4 mV/℃。普通充电器在25℃处为最佳工作状态;在环境温度为0℃时充电不足;在45℃时可能因严重过充电缩短电池的使用寿命。要使得蓄电池延长工作寿命,对蓄电池的工作状态要有一定的了解和分析,从而实现对蓄电池进行保护的目的。蓄电池有四种工作状态:通常状态、过电流状态、过充电状态、过放电状态。但是由于不同的过放电电流对蓄电池的容量和寿命所产生的影响不尽相同,所以对蓄电池的过放电电流检测也要分别对待。当电池处于过充电状态的时间较长,则会严重降低电池的容量,缩短电池的寿命。当电池处于过放电状态的时间超过规定时间,则电池由于电池电压过低可能无法再充电使用,从而使得电池寿命降低。

根据以上所述,充电方式对免维护铅酸蓄电池的寿命有很大影响,同时为了使电池始终处于良好的工作状态,蓄电池保护电路必须能够对电池的非正常工作状态进行检测,并作出动作以使电池能够从不正常的工作状态回到通常工作状态,从而实现对电池的保护。

3. 单元模块设计

3.1充电模块

芯片的充电模块框图如图2所示。该电路包括限流比较器、电流取样比较器、基准电压源、欠压检测电路、电压取样电路和逻辑控制电路。

图2 充电模块框图

该模块内含有独立的限流放大器和电压控制电路,它可以控制芯片外驱动器,驱动器提供的输出电流为20~30 mA,可直接驱动外部串联的调整管,从而调整充电器的输出电压与电流。电压和电流检测比较器检测蓄电池的充电状态,

湖北科技学院本科毕业论文(设计):外文翻译

并控制状态逻辑电路的输入信号。当电池电压或电流过低时,充电启动比较器控制充电。电器进入涓流充电状态,当驱动器截止时,该比较器还能输出20 mA 左右,进入涓流充电电流。这样,当电池短路或反接时,充电器只能以小电流充电,避免了因充电电流过大而损坏电池。此模块构成的充电电路充电过程分为二个充电状态:大电流恒流充电状态、高电压过充电状态和低电压恒压浮充状态。充电过程从大电流恒流充电状态开始,在这种状态下充电器输出恒定的充电电流。同时充电器连续监控电池组的两端电压,当电池电压达到转换电压过充转换电压Vsam 时,电池的电量己恢复到放出容量的70%~90%,充电器转入过充电状态。在此状态下,充电器输出电压升高到过充电压V oc ,由于充电器输出电压保持恒定不变,所以充电电流连续下降。当电流下降到过充中止电流Ioct 时,电池的容量己达到额定容量的100%,充电器输出电压下降到较低的浮充电压VF 。

3.2保护模块

芯片内部保护电路模块框图如图3所示。该电路包括控制逻辑电路、取样电路、过充电检测电路、过放电检测比较器、过电流检测比较器、负载短路检测电路、电平转换电路和基准电路(BGR)。

图3 电池保护的系统框图

此模块构成的保护电路如图4所示。当芯片的供电电压在正常工作范围内,且VM 管脚处的电压在过电流I 检测电压之下,则此时电池处于通常工作状态,芯片的充放电控制端CO 和DO 均为高电平,这时芯片处于通常工作模式。而当电池放电电流变大,会引起VM 管脚处的电压上升,若VM 管脚处的电压在过电流检测电压Viov 之上,则此时电池处于过电流状态,如果这种状态保持相应的过电流延时时间tiov ,芯片禁止电池放电,这时充电控制端CO 为高电平,而

湖北科技学院本科毕业论文(设计):外文翻译

放电控制端DO 为低电平,芯片处于过电流模式,一般为了对电池起到更加安全合理的保护,芯片会对电池的不同过放电电流采取不同的过放电电流延时时间保护。一般规律是过放电电流越大,则过放电电流延时时间越短。当芯片的供电电压在过充电检测电压之上(Vdd>Vcu)时,则电池处于过充电状态,如果这种状态保持相应的过充电延时时间tcu 芯片将禁止电池充电,此时放电控制端DO 为高电平,而充电控制端CO 为低电平,芯片处于过充电模式。当芯片的供电电压在过放电检测电压之下(Vdd

图4 保护电路应用原理图

4. 电路设计

由两个充电与保护模块结构图可将电路分为四部分:电源检测电路(欠压检测电路) 、偏置电路(取样电路、基准电路以及偏置电路) 、比较器部分(包括过充电检测比较器/过放电检测比较器、过流检测比较器和负载短路检测电路) 及逻辑控制部分。

文中主要介绍欠压检测电路设计(图5) ,并给出带隙基准电路(图6) 。

湖北科技学院本科毕业论文(设计):外文翻译

图5 欠压检测电路

图6 基准电源电路图

蓄电池的充电、电压的稳定尤为重要,欠压、过压保护是必不可少的,因此通过在芯片内部集成过压、欠压保护电路来提高电源的可靠性和安全性。并且保护电路的设计要简单、实用,此处设计了一种CMOS 工艺下的欠压保护电路,此电路结构简单,工艺实现容易,可用做高压或功率集成电路等的电源保护电路。 欠压保护的电路原理图如图5所示,共由五部分组成:偏置电路、基准电压、分压电路、差分放大器、输出电路。本电路的电源电压是10V ;M0,M1,M2,R0是电路的偏置部分,给后级电路提供偏置,电阻Ro 决定了电路的工作点,M0,M1,M2组成电流镜;R1,M14是欠压信号的反馈回路;其余M3,M4,M5,M6,M7,M8,M9,M10,M11,M12,M13,M14组成四级放大比较器;M15,DO 产生基准电压,输入比较器的同相端,固定不变(V +),分压电阻R1,R2,R3输入到比较器的反相端,当电源电压正常工作时,反相端的欠压检测输给比较器的反相端的电压大于V+。比较器输出为低,M14截止,反馈电路不起作用; 当欠压发生时,分压电阻R1,R2,R3反应比较敏感,当电阻分压后输给反相端的电压小于V ,比较器的输出电压为高,此信号将M14开启,使得R 两端的电压变为M 两端的饱和电压,趋近于0V ,从而进一步拉低了R1>R2

湖北科技学院本科毕业论文(设计):外文翻译

分压后的输出电压,形成了欠压的正反馈。输出为高,欠压锁定,起到了保护作用。

5. 仿真模拟结果与分析

本设计电路采用CSMC 0.6 μm 数字CMOS 工艺对电路进行仿真分析。在对电路做整体仿真时,主要观察的是保护模块对电池的充放电过程是否通过监测Vdd 电位和Vm 电位而使芯片的CO 端和DO 端发生相应的变化。图7所示的整体仿真波形图是保护模块随着电池电压的变化从通常工作模式转换到过充电模式,然后回到通常工作模式,接着进入过放电模式,最后再回到通常工作模式。由于本设计处于前期阶段,各个参数还需要优化,只是提供初步的仿真结果。

图7 过压与欠压保护电路仿真波形

6. 结论

设计了一种集蓄电池充电与保护功能于一身的IC 。利用此设计既可以减小而积,又可以减少外围电路元器件。电路同时采用了低功耗设计。由于此项目正在进行设计优化阶段,完整的仿真还不能达到要求,还需要对各个模块电路进行优化设计。

湖北科技学院本科毕业论文(设计):外文翻译

毕业设计(论文)原创性声明和使用授权说明

原创性声明

本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得 及其它教育机构的学位或学历而使用过的材料。对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。

作 者 签 名: 日 期: 指导教师签名: 日 期:

使用授权说明

本人完全了解 大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部内容。

作者签名: 日 期:

湖北科技学院本科毕业论文(设计):外文翻译

学位论文原创性声明

本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。本人完全意识到本声明的法律后果由本人承担。

作者签名: 日期: 年 月 日

学位论文版权使用授权书

本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。本人授权 大学可以将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。

涉密论文按学校规定处理。

作者签名: 日期: 年 月 日

导师签名: 日期: 年 月 日

湖北科技学院本科毕业论文(设计):外文翻译

注 意 事 项

1. 设计(论文)的内容包括:

1)封面(按教务处制定的标准封面格式制作)

2)原创性声明

3)中文摘要(300字左右)、关键词

4)外文摘要、关键词

5)目次页(附件不统一编入)

6)论文主体部分:引言(或绪论)、正文、结论

7)参考文献

8)致谢

9)附录(对论文支持必要时)

2. 论文字数要求:理工类设计(论文)正文字数不少于1万字(不包括图纸、程序清单等),文科类论文正文字数不少于1.2万字。

3. 附件包括:任务书、开题报告、外文译文、译文原文(复印件)。

4. 文字、图表要求:

1)文字通顺,语言流畅,书写字迹工整,打印字体及大小符合要求,无错别字,不准请他人代写

2)工程设计类题目的图纸,要求部分用尺规绘制,部分用计算机绘制,所有图纸应符合国家技术标准规范。图表整洁,布局合理,文字注释必须使用工程字书写,不准用徒手画

3)毕业论文须用A4单面打印,论文50页以上的双面打印

4)图表应绘制于无格子的页面上

5)软件工程类课题应有程序清单,并提供电子文档

5. 装订顺序

1)设计(论文)

2)附件:按照任务书、开题报告、外文译文、译文原文(复印件)次序装订

3)其它


相关文章

  • 论文开题报告全面整理
  • 开题报告.文献检索账号.文献综述.外文翻译.抄袭检测软件.论文目录,都在这了都在这了,有备无患,拿去吧!! 开题报告.文献综述.外文翻译.论文反抄袭软件.论文目录,就差论文正文了,其他都全了!! 开题报告主要包括以下几个方面: (一)论文名称 论文名称就是课题的名字 第一,名称要准确.规范.准确就是 ...

  • 本科毕业生论文外文文献翻译-当代西方建筑美学新思维毕业论文外文翻译-中英文对照论文翻译
  • 第一部部分外文文献原文部分 中文2000字 New thinking of contemporary western architectural aesthetics One of the most striking features of aesthetics of contemporary we ...

  • 20**年计算机专业毕业论文题目大全
  • 计算机专业毕业论文主题 基于asp 语言的测试项目 学生信息管理系统的设计与实现 基于ASP.NET 的社区人口管理系统 基于ASP.NET 的课程教学网站设计 公司会议网站 C#高校工资管理系统 C#在线点歌系统 <数据库原理>精品课程网站设计 教师住房管理系统 <计算机网络&g ...

  • 海南大学 文献信息检索20**年-20**年上学期试卷
  • 2014-2015第一学期 <文献信息检索与利用>考核题 姓名: 学院: 专业: 任课老师:张红霞 成绩: 一.自拟一道与本专业有关的检索课题进行检索,至少应包括三 个(含三个)以上的检索词.(温馨提示:自拟的题目不能和其他 同学重复,主题重复,试卷退回重做或做不及格处理.) 题目:中国 ...

  • 毕业设计英文翻译]
  • 外文文献翻译(译成中文1000字左右): [主要阅读文献不少于5篇,译文后附注文献信息,包括:作者.书名(或论文题目).出 版 社(或刊物名称).出版时间(或刊号).页码.提供所译外文资料附件(印刷类含封面.封底.目录.翻译部分的复印件等,网站类的请附网址及原文] 太阳能-地源热泵的热源性能 Y. ...

  • 毕业论文规范20**年
  • 武汉科技大学 本科毕业设计(论文) 基本规范 毕业设计(论文) 是培养学生综合运用所学知识,分析和解决实际问题,提高创新能力的重要环节.保质保量完成毕业设计(论文) 是申请学士学位的基本要求.为了进一步提高我校本科毕业设计(论文) 质量,根据<武汉科技大学毕业设计(论文) 工作条例>,对 ...

  • 中国民航大学毕业设计模版(终稿)20**年修改版
  • Civil Aviation University of China 毕 业 论 文 专 业: ×××××××× 学 号: ×××× 学生姓名: ××× 所属学院: ××××× 指导教师: ××× 二〇一×年十月 中国民航大学本科生毕业论文 中文题目 English title 专 业:×××× 学 ...

  • 企业财务营运能力比率分析中英文对照外文翻译文献
  • 中英文对照外文翻译文献 (文档含英文原文和中文翻译) 营运能力比率分析 1.财务比率分析 通过财务分析, 可以使不同的信息使用者得到有关企业营运状况和财务状况的信息. 这些信息都是很有价值的, 它可以帮助企业经营者全面了 解企业的营运状况, 可以帮助企业投资者预测投资风险和投资报酬, 做出投资. 继 ...

  • ZigBee无线传感器中英文对照外文翻译文献
  • 中英文资料对照外文翻译 ZigBee :无线技术,低功耗传感器网络 技师(工程师)们在发掘无线传感器的潜在应用方面从未感到任何困难.例如,在家庭安全系统方面,无线传感器相对于有线传感器更易安装.而在有线传感器的装置通常占无线传感器安装的费用80%的工业环境方面同样正确(适用).而且相比于有线传感器的 ...

© 2024 范文中心 | 联系我们 webmaster# onjobs.com.cn