常用防雷电路设计参考原理图

防雷器基本电路设计图 目录

7

一、交流电源防雷器

8

(一)单相并联式防雷器(电路一~电路三) (二)三相并联式防雷器(电路一~电路三)

二、通信机房用直流电源防雷器

(一)并联式防雷器

1、正极接地(–48V)直流电源 9

2、负极接地(+24V)直流电源

3、正负对称(±110V)直流电源 11

(二)串联式防雷器

1、正极接地(–48V)直流电源

2、负极接地(+24V)直流电源

3、正负对称(±110V)直流电源 14

三、通用二级信号防雷器

(一)双绞线型信号电路

通用电路一~通用电路五 15~19

(二)同轴线型信号电路

(1)外导体接地电路(通用电路一~通用电路三) 20~22

(224

(三)提高传输频率/速率的方法

25

四、小功率电源变压器或开关电源保护电路(电路一~电路三)

26~28

五、通讯电子设备的保护电路(电路一~电路三)

29~31

六、直流电源与信号同传的保护电路

32

七、信号电路的双重二级保护方式

33

八、检测/控制电路的保护(接地、不接地)

34~35

九、单级信号防雷器

1、只用玻璃放电管的保护电路 36

2、只用半导体过压保护器的保护电路 37

3、只用 TVS 管的保护电路 38

4、复合单级保护电路 39

十、天馈防雷器

1、单级电路天馈防雷器 40

2、二级电路天馈防雷器

3、三级电路天馈防雷器 42

十一、防静电保护器

43

1

一、交流电源防雷器 (一)单相并联式防雷器

说明:

1、优点:电路简单,采用复合对称电路,共模、差模全保护, L、N 可以随便接。 缺点:压敏电阻 RV1 短路失效后易引起火灾。最好在每个压敏电阻上串联一个工频保险 丝以防压敏电阻短路起火。如果 L、N 线不可能接反,则可省去压敏电阻 RV2、RV3,将 放电管 G 的上端直接接到 N 线上,构成“1+1”电路。

2、压敏电阻的压敏电压值参照下表选取(选压敏电压高一点的更安全、耐用,故 障率低,但残压略高);根据通流容量要求选择外形尺寸和封装形式,或采用几个压敏 600V。当要求的通流容量≤3KA 时,可以用玻璃放电管代替。

4、压敏电阻和气体放电管都必须按冲击 10 次以上的降额值计算通流容量(压敏电

阻为一次冲击通流容量的三分之一左右,气体放电管为最大通流容量的一半左右)。

2

一、交流电源防雷器 (一)单相并联式防雷器

说明:

1、优点:采用复合对称电路,共模、差模全保护, L、N 可以随便接,正常工作

时无漏电流,可延长器件使用寿命,由于陶瓷气体放电管失效模式大多为开路,不易引

起火灾。缺点:万一压敏电阻和陶瓷气体放电管都短路失效时还有可能起火。

2、压敏电阻的压敏电压值参照下表选取(选压敏电压高一点的更安全、耐用,故 障率低,但残压略高);根据通流容量要求选择外形尺寸和封装形式,或采用几个压敏

600V。当要求的通流容量≤3KA 时,可以用玻璃放电管代替。

4、压敏电阻和气体放电管都必须按冲击 10 次以上的降额值计算通流容量(压敏电

阻为一次冲击通流容量的三分之一左右,气体放电管为最大通流容量的一半左右)。

3

一、交流电源防雷器 (一)单相并联式防雷器

电路三说明:

1、优点:采用复合对称电路,共模、差模全保护,L、N 可以随便接,安全,压敏 电阻短路失效后能与电路脱离,一般不会引起火灾。

2、压敏电阻的压敏电压值参照下表选取(选压敏电压高一点的更安全、耐用,故 障率低,但残压略高);根据通流容量要求选择外形尺寸和封装形式,或采用几个压敏 电阻并联(应挑选压敏电压相近的并联,每个压敏电阻都要单独串联温度保险管,以延

℃℃ 合。最好再串联一个工频保险丝以防工频过电压瞬间击穿压敏电阻起火。

4、陶瓷气体放电管的通流容量根据要求的通流容量选择,直流击穿电压为 470V~ 600V。当要求的通流容量≤3KA 时,可以用玻璃放电管代替。

5、压敏电阻和气体放电管都必须按冲击 10 次以上的降额值计算通流容量(压敏电

阻为一次冲击通流容量的三分之一左右,气体放电管为最大通流容量的一半左右)。

4

一、交流电源防雷器 (二)三相并联式防雷器 电路一:最简单的电路

说明:

1、优点:采用“3+1”电路,电路简单,三相全保护。缺点:压敏电阻短路失效 后易引起火灾。最好在每个压敏电阻上串联一个工频保险丝以防压敏电阻短路起火。

2、压敏电阻的压敏电压值参照下表选取(选压敏电压高一点的更安全、耐用,故

障率低,但残压略高);根据通流容量要求选择外形尺寸和封装形式,或采用几个压敏 电阻并联(如图所示为每相两个压敏电阻并联,应挑选压敏电压值相近的并联,以延长

600V。当要求的通流容量≤3KA 时,可以用玻璃放电管代替。

4、压敏电阻和气体放电管都必须按冲击 10 次以上的降额值计算通流容量(压敏电

阻为一次冲击通流容量的三分之一左右,气体放电管为最大通流容量的一半左右)。

5

一、交流电源防雷器 (二)三相并联式防雷器 电路二:较安全的电路

说明:

1、优点:采用“3+1”电路,三相全保护,正常工作时无漏电流,可延长器件使 用寿命,由于陶瓷气体放电管失效模式大多为开路,不易引起火灾。缺点:万一压敏电 阻和陶瓷气体放电管都短路失效时还有可能引起火灾。

2、压敏电阻的压敏电压值参照下表选取(选压敏电压高一点的更安全、耐用,故 障率低,但残压略高);根据通流容量要求选择外形尺寸和封装形式,或采用几个压敏 电阻并联(如图所示为每相两个压敏电阻并联,应挑选压敏电压值相近的并联,以延长

3、陶瓷气体放电管的通流容量根据要求的通流容量选择,直流击穿电压为 470V~ 600V。当要求的通流容量≤3KA 时,可以用玻璃放电管代替。

4、压敏电阻和气体放电管都必须按冲击 10 次以上的降额值计算通流容量(压敏电

阻为一次冲击通流容量的三分之一左右,气体放电管为最大通流容量的一半左右)。

6

一、交流电源防雷器 (二)三相并联式防雷器 电路三:通用的安全保护电路

说明:

1、优点:采用“3+1”电路,三相全保护,安全,压敏电阻短路失效后能与电路 脱离,一般不会引起火灾。

2、压敏电阻的压敏电压值参照下表选取(选压敏电压高一点的更安全、耐用,故

障率低,但残压略高);根据通流容量要求选择外形尺寸和封装形式,或采用几个压敏 电阻并联(如图所示为每相两个压敏电阻并联,应挑选压敏电压值相近的并联,每个压

敏电阻都要单独串联温度保险管,以延长使用寿命和确保安全)。 合。最好再串联一个工频保险丝以防工频过电压瞬间击穿压敏电阻起火。

4、陶瓷气体放电管的通流容量根据要求的通流容量选择,直流击穿电压为 470V~ 600V。当要求的通流容量≤3KA 时,可以用玻璃放电管代替。

5、压敏电阻和气体放电管都必须按冲击 10 次以上的降额值计算通流容量(压敏电

阻为一次冲击通流容量的三分之一左右,气体放电管为最大通流容量的一半左右)。

7

一、交流电源防雷器 (三)单相串联式防雷器 单相通用安全保护电路:

1、优点:采用两级复合对称电路,共模、差模全保护,残压低,L、N 可以随便接, 安全,压敏电阻短路失效后能与电路脱离,一般不会引起火灾。

2、压敏电阻的压敏电压值参照下表选取(选压敏电压高一点的更安全、耐用,故 障率低,但残压略高);根据通流容量要求选择外形尺寸和封装形式,或采用几个压敏 电阻并联(如图所示第一级为 m 个压敏电阻并联,第二级为 n 个并联,应挑选压敏电压 ℃℃ 合。最好再串联一个工频保险丝以防工频过电压瞬间击穿压敏电阻起火。

4、陶瓷气体放电管的通流容量根据要求的通流容量选择,直流击穿电压为 470V~ 600V。当要求的通流容量≤3KA 时,可以用玻璃放电管代替。

5、压敏电阻和放电管都必须按冲击 10 次以上的降额值计算通流容量(压敏电阻为

一次冲击通流容量的三分之一左右,放电管为最大通流容量的一半左右)。

6、串联电感为空心电感,电感量应≥20μH,导线直径应按负载电流计算。

8

一、交流电源防雷器

(四)三相串联式防雷器 三相通用安全保护电路:

说明1、优点:采用两级“3+1”电路,三相全保护,残压低,安全,压敏电阻短路失 效后能与电路脱离,一般不会引起火灾。

2、压敏电阻的压敏电压值参照下表选取(选压敏电压高一点的更安全、耐用,故 障率低,但残压略高);根据通流容量要求选择外形尺寸和封装形式,或采用几个压敏 电阻并联(如图所示第一级为 m 个压敏电阻并联,第二级为 n 个并联,应挑选压敏电压

℃℃ 合。最好再串联一个工频保险丝以防工频过电压瞬间击穿压敏电阻起火。

4、陶瓷气体放电管的通流容量根据要求的通流容量选择,直流击穿电压为 470V~ 600V。当要求的通流容量≤3KA 时,可以用玻璃放电管代替。

5、压敏电阻和放电管都必须按冲击 10 次以上的降额值计算通流容量(压敏电阻为

一次冲击通流容量的三分之一左右,放电管为最大通流容量的一半左右)。

6、串联电感为空心电感,电感量应≥20μH,导线直径应按负载电流计算。

9

二、通信机房用直流电源防雷器 (一)并联式直流电源防雷器

1

说明:

1、压敏电阻在图上所标型号中选取(选压敏电压高一点的更安全、耐用,故障率

低,但残压略高);根据通流容量要求选择外形尺寸和封装形式,或采用几个压敏电阻 并联(应挑选压敏电压相近的并联,每个压敏电阻都要单独串联温度保险管,以延长使

用寿命和确保安全)。

2、温度保险管一般采用 130℃~135℃、10A/250V 的,应与压敏电阻有良好的热耦

合。最好再串联一个电流保险丝以防操作过电压瞬间击穿压敏电阻起火。

3、陶瓷气体放电管的通流容量根据要求的通流容量选择,直流击穿电压一般为 90V。当要求的通流容量≤3KA 时,可以用玻璃放电管代替。

4、压敏电阻和气体放电管都必须按冲击 10 次以上的降额值计算通流容量(压敏电

阻为一次冲击通流容量的三分之一左右,气体放电管为最大通流容量的一半左右)。

10

二、通信机房用直流电源防雷器 (一)并联式直流电源防雷器

2

说明:

1、压敏电阻在图上所标型号中选取(选压敏电压高一点的更安全、耐用,故障率

低,但残压略高);根据通流容量要求选择外形尺寸和封装形式,或采用几个压敏电阻 并联(应挑选压敏电压相近的并联,每个压敏电阻都要单独串联温度保险管,以延长使

用寿命和确保安全)。

2、温度保险管一般采用 130℃~135℃、10A/250V 的,应与压敏电阻有良好的热耦

合。最好再串联一个电流保险丝以防操作过电压瞬间击穿压敏电阻起火。

3、陶瓷气体放电管的通流容量根据要求的通流容量选择,直流击穿电压一般为 90V。当要求的通流容量≤3KA 时,可以用玻璃放电管代替。

4、压敏电阻和气体放电管都必须按冲击 10 次以上的降额值计算通流容量(压敏电

阻为一次冲击通流容量的三分之一左右,气体放电管为最大通流容量的一半左右)。

11

二、通信机房用直流电源防雷器 (一)并联式直流电源防雷器

3

说明:

1、压敏电阻在图上所标型号中选取(选压敏电压高一点的更安全、耐用,故障率

低,但残压略高),根据通流容量要求选择外形尺寸和封装形式,或采用几个压敏电阻 并联(应挑选压敏电压相近的并联,每个压敏电阻都要单独串联温度保险管,以延长使

用寿命和确保安全)。

2、温度保险管一般采用 130℃~135℃、10A/250V 的,应与压敏电阻有良好的热耦

合。最好再串联一个电流保险丝以防操作过电压瞬间击穿压敏电阻起火。

3、陶瓷气体放电管的通流容量根据要求的通流容量选择,直流击穿电压一般为 150V。当要求的通流容量≤3KA 时,可以用玻璃放电管代替。

4、压敏电阻和气体放电管都必须按冲击 10 次以上的降额值计算通流容量(压敏电

阻为一次冲击通流容量的三分之一左右,气体放电管为最大通流容量的一半左右)。

12

二、通信机房用直流电源防雷器 (二)串联式直流电源防雷器

1

说明:

1、压敏电阻在图上所标型号中选取(压敏电压高的更安全、耐用,故障率低,但 残压略高),根据通流容量要求选择外形尺寸和封装形式,要求通流容量 Im 大时,第一、 二级可以如图所示分别用m个、n个压敏电阻并联(应挑选压敏电压相近的并联,每个 压敏电阻都要单独串联温度保险管,以延长使用寿命和确保安全),按第一级 Im1≥Im, 第二级 Im2≥(0.2~0.3)Im 估算。

2、温度保险管一般采用 130℃~135℃、10A/250V 的,应与压敏电阻有良好的热耦 合。最好再串联一个电流保险丝以防操作过电压瞬间击穿压敏电阻起火。

3、第一个陶瓷气体放电管 G1 的通流容量根据要求的通流容量 Im 选择,第二个放 电管 G2 可以参照第二级 Im2 选择。

4、压敏电阻和放电管都必须按冲击 10 次以上的降额值计算通流容量(压敏电阻为 一次冲击通流容量的三分之一左右,放电管为最大通流容量的一半左右)。

5、串联电感为空心电感,电感量应≥20μH,导线直径应按负载电流计算。

13

二、通信机房用直流电源防雷器 (二)串联式直流电源防雷器 2

说明:

1、压敏电阻在图上所标型号中选取(压敏电压高的更安全、耐用,故障率低,但 残压略高),根据通流容量要求选择外形尺寸和封装形式,要求通流容量 Im 大时,第一、 二级可以如图所示分别用m个、n个压敏电阻并联(应挑选压敏电压相近的并联,每个 压敏电阻都要单独串联温度保险管,以延长使用寿命和确保安全),按第一级 Im1≥Im, 第二级 Im2≥(0.2~0.3)Im 估算。

2、温度保险管一般采用 130℃~135℃、10A/250V 的,应与压敏电阻有良好的热耦 合。最好再串联一个电流保险丝以防操作过电压瞬间击穿压敏电阻起火。

3、第一个陶瓷气体放电管 G1 的通流容量根据要求的通流容量 Im 选择,第二个放 电管 G2 可以参照第二级 Im2 选择。

4、压敏电阻和放电管都必须按冲击 10 次以上的降额值计算通流容量(压敏电阻为 一次冲击通流容量的三分之一左右,放电管为最大通流容量的一半左右)。

5、串联电感为空心电感,电感量应≥20μH,导线直径应按负载电流计算。

14

二、通信机房用直流电源防雷器 (二)串联式直流电源防雷器

3

说明:

1、压敏电阻在图上所标型号中选取(选压敏电压高一点的更安全、耐用,故障率 低,但残压略高),根据通流容量要求选择外形尺寸和封装形式,要求通流容量 Im 大时,

第一、二级可以如图所示分别用m个、n个压敏电阻并联(应挑选压敏电压相近的并联,

每个压敏电阻都要单独串联温度保险管,以延长使用寿命和确保安全),按第一级 Im1≥Im,第二级 Im2≥(0.2~0.3)Im 估算。

2、温度保险管一般采用 130℃~135℃、10A/250V 的,应与压敏电阻有良好的热耦 合。最好再串联一个电流保险丝以防操作过电压瞬间击穿压敏电阻起火。

3、陶瓷气体放电管的通流容量根据要求的通流容量选择

4、压敏电阻和气体放电管都必须按冲击 10 次以上的降额值计算通流容量(压敏电 阻为一次冲击通流容量的三分之一左右,气体放电管为最大通流容量的一半左右)。

5、串联电感为空心电感,电感量应≥20μH,导线直径应按负载电流计算。

15

三、通用两级信号防雷器 (一)双绞线型

通用电路一:

说明:

①R1、R2 可以用普通金属氧化膜电阻(2W-4.3~5.1Ω),也可以用冷态电阻相当 的正温度系数热敏电阻(如:自恢复保险丝:LP60-010/030,LB180(U))。

16

三、通用两级信号防雷器 (一)双绞线型

通用电路二:

说明:

①R1、R2 可以用普通金属氧化膜电阻(2W-4.3~5.1Ω),也可以用冷态电阻相当 的正温度系数热敏电阻(如:自恢复保险丝:LP60-010/030,LB180(U))。

没有连续直流电压。

③本电路只适用于冲击电流不大于玻璃放电管最大脉冲放电电流的场合,且电路中

17

三、通用两级信号防雷器 (一)双绞线型

说明:

①R1、R2 可以用普通金属氧化膜电阻(2W-4.3~5.6Ω),也可以用冷态电阻相当 的正温度系数热敏电阻(如:自恢复保险丝:LP60-010/030,LB180(U))。

②陶瓷气体放电管和半导体过压保护器的直流击穿电压根据信号电压幅度选择,

见下表:

③本电路只适用于电路中没有连续直流电压的场合。

18

三、通用二级信号防雷器 (一)双绞线型

说明:

①R1、R2 可以用普通金属氧化膜电阻(2W-4.3~5.6Ω),也可以用冷态电阻相当 的正温度系数热敏电阻(如:自恢复保险丝:LP60-010/030,LB180(U))。

②陶瓷气体放电管和半导体过电压保护器的直流击穿电压根据信号电压幅度选

③使用电压低的半导体过电压保护器时,必须如图所示在接地端串联玻璃放电管; 当使用电压高于 100V 的半导体过电压保护器时可以不串联玻璃放电管。

④本电路只适用于电路中没有连续直流电压的场合。

19

三、通用两级信号防雷器 (一)双绞线型

通用电路五:

说明:

①R1、R2 可以用普通金属氧化膜电阻(2W-4.3~5.1Ω),也可以用冷态电阻相当 的正温度系数热敏电阻(如:自恢复保险丝:LP60-010/030,LB180(U))。

②陶瓷气体放电管和 TVS 管的直流击穿电压根据信号电压幅度选择,见下表: ③本电路适用于传输高频/高速信号(最高频率可达 20MHZ)。

20

三、通用两级信号防雷器 (二)同轴线型

(1)外导体接地电路:

通用电路一:

说明:

①R1、R2 可以用普通金属氧化膜电阻(2W-4.3~5.1Ω),也可以用冷态电阻相当 的正温度系数热敏电阻(如:自恢复保险丝:LP60-010/030,LB180(U))。

③电路带宽很宽,可以传输 20MHZ 以下的高频信号。 ④输入、输出接头应分别与原系统的接头类型相配。

21

三、通用两级信号防雷器 (二)同轴线型

(1)外导体接地电路:

通用电路二:

说明:

①R1、R2 可以用普通金属氧化膜电阻(2W-4.3~5.6Ω),也可以用冷态电阻相当 的正温度系数热敏电阻(自恢复保险丝:LP60-010/030,LB180(U))。

②陶瓷气体放电管和半导体过压保护器的直流击穿电压根据信号电压幅度选择,

见下表:

③本电路只适用于电路中没有连续直流电压的场合。 ④输入、输出接头应分别与原系统的接头类型相配。

22

三、通用两级信号防雷器 (二)同轴线型

(1)外导体接地电路:

通用电路三:

说明:

①本电路只适用于信号频率/速率较低,且电路中没有连续直流电压的场合。 ②R 可以用普通金属氧化膜电阻(2W-4.3~5.6Ω),也可以用冷态电阻相当的正温 度系数热敏电阻(自恢复保险丝:LP60-010/030,LB180(U))。

③玻璃放电管和半导体过电压保护器的直流击穿电压根据信号电压幅度选择,见

④输入、输出接头应分别与原系统的接头类型相配。

三、通用两级信号防雷器

(二)同轴线型 (2)外导体不接地电路:

通用电路一:

23

说明:

①电路带宽很宽,可以传输 20MHZ 以下的高频信号。

②陶瓷气体放电管和 TVS1 的直流击穿电压根据信号电压幅度选择,见下表: ③R1、R2 可以用普通金属氧化膜电阻(2W-4.3~5.1Ω),也可以用冷态电阻相当 的正温度系数热敏电阻(如:自恢复保险丝:LP60-010/030,LB180(U))。

④输入、输出接头应分别与原系统的接头类型相配。

24

三、通用两级信号防雷器 (二)同轴线型

(2)外导体不接地电路:

通用电路二:

说明:

①R1、R2 可以用普通金属氧化膜电阻(2W-4.3~5.1Ω),也可以用冷态电阻相当 的正温度系数热敏电阻(如:自恢复保险丝:LP60-010/030,LB180(U))。

②玻璃放电管和半导体过压保护器的直流击穿电压根据信号电压幅度选择,见下

表:

③本电路只适用于信号频率/速率较低的场合。 ④输入、输出接头应分别与原系统的接头类型相配。

25

三、通用两级信号防雷器 (三)提高传输频率/速率的方法

1、采用低电容 TVS 管或半导体过压保护器

传输频率/速率≥10MHz,Cj≤60pF; 传输频率/速率≥100MHz,Cj≤20pF。

2、将 所示):

26

四、小功率电源变压器或开关电源保护电路(以两组输出为例)

说明:

①自恢复保险丝 PTC 根据输入电流和最高工作环境温度选择,压敏电阻 RV1 的通

流容量根据输入浪涌电流大小选择(一个不够时,可用几个并联,参照“一、交流电源

防雷器” ),压敏电压应在 470~620V 之间选取(电压很不稳定的地方应选更高的)。

② RV2、RV3 根据 U1、U2 的数值选择压敏电压值,外形大小根据输出线长度选择, 不带长引线时用 5D 或 7D,用长引线输出时,应选用通流容量更大的压敏电阻(引线越 长,通流容量要越大)。

③陶瓷气体放电管一般用直流击穿电压 470V 的,通流容量根据输入浪涌电流大小 选择。

27

四、小功率电源变压器或开关电源保护电路(以两组输出为例) 电路二:

①自恢复保险丝输入

LBR×××PTC根据输入电流和最高工作环境温度选择,压敏电阻

RV1 的通

流容量根据输入浪涌电流大小选择(一个不够时,可用几个并联,参照“一、交流电源 防雷器” ),压敏电压应在 470~620V 之间选取(电压很不稳定的地方应选更高的)。

② TVS1、TVS2 一般用 1.5KE 系列的(浪涌电流很小的地方也可用 P6KE 系列的), 根据 U1、U2 的最大峰值电压选择击穿电压值(VBRmin≥1.2Up)。

③陶瓷气体放电管一般用直流击穿电压保护接地470V 的,通流容量根据输入浪涌电流大小 选择。

④本电路只适用于输出端不带长引线、浪涌电流较小的地方使用(例如在同一块 电路板或相邻电路板上)。

PE

28

四、小功率电源变压器或开关电源保护电路(以两组输出为例)

说明:

①自恢复保险丝 PTC 根据输入电流和最高工作环境温度选择,压敏电阻 RV1 的通

流容量根据输入浪涌电流大小选择(一个不够时,可用几个并联,参照“一、交流电源

防雷器” ),压敏电压应在 470~620V 之间选取(电压很不稳定的地方应选更高的)。

② RV2、RV3 根据 U1、U2 的数值选择压敏电压值,外形大小根据输出线长度选 择,不带长引线时用 5D 或 7D,用长引线输出时,应选用通流容量更大的压敏电阻(引 线越长,通流容量要越大)。输出电流较大时,要在线上串联自恢复保险丝 PTC2、PTC3 (根据输出电流和最高环境温度选择)。

③陶瓷气体放电管一般用直流击穿电压 470V 的,通流容量根据输入浪涌电流大小 选择。

五、通讯电子设备的保护电路

电路一:

29

说明:

①本电路适用于架空线引入或其它浪涌电流较大的场合。

②陶瓷气体放电管的最大放电电流一般选 10kA 或 5kA,直流击穿电压根据信号电 压幅度选择,见下表:

③TVS 管用 P6KE220CA 型。如果传输线上没有振铃信号,则可用 P6KE68CA 型。 ④R1、R2 可以用普通金属氧化膜电阻(4.3~5.6Ω),也可以用冷态电阻相当的正 温度系数热敏电阻(如:自恢复保险丝:LP60-010/030,LB180(U))。

五、通讯电子设备的保护电路

电路二:

30

说明:

①在埋地电缆引入或其它浪涌电流较小的场合使用。 ②BLSA1、BLSA2 用 YA-301 型或 YS-301 型玻璃放电管。

③TVS 管用 P6KE220CA 型。如果传输线上没有振铃信号,TVS 管可用 P6KE68CA 型。 ④R1、R2 可以用普通金属氧化膜电阻(3.6~5.1Ω),也可以用冷态电阻相当的正 温度系数热敏电阻(如:自恢复保险丝:LP60-010/030,LB180(U))。

31

五、通讯电子设备的保护电路 电路三:

(2)没有振铃信号:

说明:

①在埋地电缆引入或其它浪涌电流较小的场合使用。

②R1、R2 可以用普通金属氧化膜电阻(3.6~5.1Ω),也可以用冷态电阻相当的正 温度系数热敏电阻(如:自恢复保险丝:LP60-010/030,LB180(U))。

③使用电压低(≤100V)的半导体过压保护器时,必须如图所示在接地端串联玻璃

放电管(BLSA3);当使用电压高于 100V 的半导体过压保护器时可以不串联玻璃放电管。

32

六、直流电源与信号同传 1、110V 不接地电源与信号同传:

2、+24V 负极接地电源与信号同传

33

七、信号电路的二级双重保护方式

说明:

图中所标元件型号适用于信号幅度≤6V,整流桥中所接的 P0080 可以用 P6KE7.5A 型 TVS 管代替(负端朝左)。其它信号幅度时,要更换元件型号。

34

八、检测/控制电路的保护

例如:水、电、煤气抄表系统,门禁、对讲、报警系统,这类系统一 般采用低频(脉冲)信号或直流(交流)开关信号。这类系统又分为不接 地系统和接地系统两大类。

(1

说明:

①R1、R2 可以用普通金属氧化膜电阻(4.3~5.1Ω),也可以用冷态电阻相当的正 温度系数热敏电阻(如:自恢复保险丝:LP60-010/030,LB180(U))。

②陶瓷气体放电管和 TVS 管的直流击穿电压根据信号电压幅度选择,见下表: ③电路中没有连续直流电压时,TVS 管可以用击穿电压相当的半导体过压保护器代 替。当浪涌电流较小时,陶瓷气体放电管可以用击穿电压相当的玻璃放电管代替。

35

八、检测/控制电路的保护

例如:水、电、煤气抄表系统,门禁、对讲、报警系统,这类系统一 般采用低频(脉冲)信号或直流(交流)开关信号。这类系统又分为不接 地系统和接地系统两大类。

(2)接地系统保护电路:

说明:

①R 可以用普通金属氧化膜电阻(4.3~5.1Ω),也可以用冷态电阻相当的正温度 系数热敏电阻(如:自恢复保险丝:LP60-010/030,LB180(U))。

③电路中没有连续直流电压时,TVS 管可以用击穿电压相当的半导体过压保护器代 替。当浪涌电流较小时,陶瓷气体放电管可以用击穿电压相当的玻璃放电管代替。

36

九、单级信号防雷器 1

说明:

①可用于信号频率/传输速率很高,但没有连续直流电压的场合。 ②玻璃放电管的直流击穿电压应根据信号电压峰值,按下式选择:

VBRmin≥1.2USpeak

③既可以对不接地的双线传输线进行保护,也可以在有公共接地线的传输系统中 (如图中虚线所示)对需要保护的线进行独立保护。

37

九、单级信号防雷器

2、只用半导体过压保护器的保护电路 (1)不带差模保护

(2)带差模保护

说明:

①可用于信号频率/传输速率较低,且没有连续直流电压的场合。 ②半导体过压保护器的击穿电压应根据信号峰值电压,按下式选择: VBR≥1.2USpeak

③当所用半导体过压保护器的击穿电压低于 100V 时,应在接地端串联一个击穿电 压大于 100V 的二端半导体过压保护器或玻璃放电管再接地,如下图所示。

④当传输线中有公共接地线(如图中虚线所示)时,采用“(1)不带差模保护” 的电路,可以对 1 线、2 线、……分别进行保护。

(2)带差模保护

38

九、单级信号防雷器 3、只用 TVS 管的保护电路

(1)不带差模保护

说明:

①可用于信号频率/传输速率较低、线路中可能有连续直流电压、浪涌电流较小的 场合。

②TVS 管的直流击穿电压应根据信号电压峰值,按下式选择:

VBRmin≥1.2USpeak

③当接地线较长、信号易受干扰时,可在 TVS1、TVS2(左图)或 TVS2、TVS3(右

图)之间加接击穿电压大于 100V 的 TVS 管或玻璃放电管再接地,如下图所示。

④当传输线中有公共接地线(如图中虚线所示)时,采用“(1)不带差模保护” 的电路,可以对 1 线、2 线、……分别进行保护。

39

九、单级信号防雷器 4、复合保护电路

①可用于信号频率/传输速率较高(≤10MHZ)的场合。整流桥若用快速恢复二极 管构成,传输信号频率/速率可达 20MHz 以上。

②当线路中有连续直流电压时,必须采用电路二。

③图中所标元件型号适用于信号幅度≤6V。信号幅度更大时,要更换整流桥中所

接元件型号(参照“两级信号保护电路”关于 TVS 管和半导体过压保护器选择的说明)。

④当接地线较长、信号易受干扰时,TVS1、TVS2 应选用击穿电压≥100V、且峰值 脉冲功率更大的 TVS 管,或采用电路三。

40

十、天馈防雷器 1、单级电路

说明:

①可以同时传送电源,保护效果较差,适用于天线不带放大器或虽然带放大器但耐 冲击能力较强的场合。

②同轴腔体和两端的接头是根据系统所用接头类型、传输信号频率范围专门设计加

工的。

③陶瓷气体放电管一般选用通流容量 20kA 的,直流击穿电压主要根据所传输的信 号功率大小选取,一般 50W 以下用 90V 的,传输功率越大,应选用直流击穿电压越高的

放电管。

④将放电管装入腔体后,用微波网络分析仪测试信号频率范围内的驻波系数、插入

损耗应满足要求。

⑤在户外使用时,腔体、接头、放电管安装孔都必须设计成防水的。

41

十、天馈防雷器 2、二级电路天馈防雷器

说明:

①保护效果好,残压低,可以同时传送电源,适用于天线带放大器或不带放大器的 场合。

②腔体和输入、输出接头是根据系统所用接头类型、传输信号频率范围专门设计加

工的。

③陶瓷气体放电管一般选用通流容量 20kA、直流击穿电压 90V 的。

④TVS 管一般用 1.5KE 系列的,击穿电压根据所传输的直流电压或交流电压峰值选

取(VBRmin≥1.2UDC 或 VBRmin≥1.2Up)。

⑤ C 是由紫铜片构成的平板电容器,平板间加聚四氟乙烯薄膜;L1、L3 是用漆包

紫铜线绕成的空心电感,L2 可用 100μH 左右的铁心电感。

⑥将元件装入腔体后,用微波网络分析仪测试信号频率范围内的驻波系数、插入损

耗应满足要求。

⑦在户外使用时,腔体、接头和盖板都必须设计成防水的。

42

十、天馈防雷器 3

说明:

①保护效果很好,残压低,可以同时传送电源,适用于天线带放大器或不带放大器 的场合。

②腔体和输入、输出接头是根据系统所用接头类型、传输信号频率范围专门设计加

工的。

③陶瓷气体放电管一般选用通流容量 20kA、直流击穿电压 90V 的。 ④压敏电阻 RV 一般选用 20D100K 型的。

⑤TVS 管一般用 1.5KE 系列的,击穿电压根据所传输的直流电压或交流电压峰值选

取(VBRmin≥1.2UDC 或 VBRmin≥1.2Up)。

⑥C 是由紫铜片构成的平板电容器,平板间加聚四氟乙烯薄膜;L1、L4 是用漆包紫

铜线绕成的空心电感,L2、L3 可用 100μH 左右的铁心电感。

⑦将元件装入腔体后,用微波网络分析仪测试信号频率范围内的驻波系数、插入损

耗应满足要求。

⑧在户外使用时,腔体、接头和盖板都必须设计成防水的。

43

十一、防静电保护器 电路一: 电路二:

电路三:

电路四:

被部件或电路

被 部件或电路

TVS

RV

说明:

① “电路一”响应时间最短,通流量较小,适用于不能接地的设备、部件或电路; ② “电路二”响应时间较短,通流量可大可小,适用于不能接地的设备、部件或 电路;

③ “电路三”响应时间很短,通流量较大,适用于可以接地的设备、部件或电路; ④ “电路四”响应时间较短,通流量较小,适用于可以接地的设备、部件或电路;

⑤ 所用器件的击穿电压(压敏电压)应低于被保护设备、部件或电路所能承受的 最高电压,但要高于电路最高工作电压,通流量根据可能感应的最大静电荷量折算成的 电流值选取。


相关文章

  • 串行通信口防雷电路设计参考
  • 智能电表等系统已经广泛地应用到工业和生活的领域.在电表中使用自动抄表技术通过通信端口读取数据,而且大部分情况采用远程读数方式.对于电表应用来说既安全又节省了时间和金钱.实现该技术的关键是确保通信链路安全可靠.由于 RS-485 标准具有长距离传输(1200 米以上),最大传输数率可以达到 10Mbp ...

  • 低压电工作业人员安全技术培训大纲和考核标准
  • 低压电工作业人员安全技术培训大纲和考核标准 1.范围 本标准规定了低压电工作业人员的基本条件. 安全技术培训 (以下简称培训) 大纲和安全技 术考核(以下简称考核)标准. 本标准适用于低压电工作业人员的培训和考核. 2.规范引用文件 下列文件所包含的条文, 通过在本标准中引用而构成为本标准的条文. ...

  • 论文参考-浅析3G通信基站电源系统组成及防雷解决方案
  • 浅析3G 通信基站电源系统组成及防雷解决方案 3G 通信基站电源设备的运行状况会很大程度上受到天气的影响,所以在很多的通信运营商进行设备的维护当中都加强了相应的力度,但是很多的人员都没有真正意识到其中的根本原因,所以在维护的过程中经常会出现事后补救的状况.当前还没有一套非常科学合理的防御措施,每一年 ...

  • 毕业论文定稿(贵州民族大学毕业设计)
  • 贵州民族大学毕业论文(设计) 电冰箱保护器的设计 系 部: 计算机与信息工程学院 专 业: 电子信息科学与技术 班 级: 2008级 学 号: [1**********]2 学生姓名: 杨胜林 指导教师: 葛一凡 2012 年 5 月 27 日 电冰箱保护器的设计 杨胜林 摘要: 随着我国人们生活水 ...

  • 住宅设计施工图毕业设计论文
  • 毕业设计(论文)专班业级学生姓名 学课号住宅小区供配电设计题指导教师 2012年6月5日 摘要 随着我国城镇建设大发展,住宅建筑多样化.高层化.集群化是必然趋势.因此,完整的住宅电气设计是指由用户开始到小区建筑群结束所涉及的相关电气设计.需要强调的是,现代住宅电气设计,无论设计思想.技术.产品选择等 ...

  • 电力工程技术
  • 序言 为更加全面和系统的对电力知识进行综合性的讲解与阐述,帮助更多业内人士.高职学员.科研人员等电力工作者快速系统的了解电力技术,进而促进国家电力事业的进步与发展,本书主编特邀电力行业资深人士,倾情著作--<电力工程技术>. 本书作为全国电力职业教育规划教材,可供电力工业.电力设备制造业 ...

  • 电气设备符号大全
  • 電氣設備符號大全(字母型符號大全) SR: 沿钢线槽敷设 BE: 沿屋架或跨屋架敷设 CLE:沿柱或跨柱敷设 WE: 沿墙面敷设 CE: 沿天棚面或顶棚面敷设 ACE:在能进入人的吊顶内敷设 BC: 暗敷设在梁内 CLC:暗敷设在柱内 WC: 暗敷设在墙内 CC: 暗敷设在顶棚内 ACC:暗敷设在不 ...

  • 油库铁路栈桥防雷防静电测试方法及保护措施改进
  • 油库铁路栈桥防雷防静电测试方法及保护措施改进 摘 要:油库铁路栈桥是一类装卸石油物资的特种设备系统,一般具有组成设施众多.运输介质危险.事故危害巨大等特点.对油库铁路栈桥的防雷防静电检测与保护措施研究能够降低油品装卸风险,保障设备安全运行,因而受到重点关注.本文分析了油库铁路栈桥的防雷防静电测试方法 ...

  • 60产品总体设计方案书
  • 产品总体设计方案书 修订记录 目 录 1 范围 .............................................................................................................................. ...

  • 幕墙避雷标准图说明
  • 幕墙防雷标准图集说明 一.幕墙防雷标准图集说明 本幕墙防雷标准图集由幕墙的防雷节点图(包括框架幕墙铝竖框避雷节点.框架幕墙钢竖框避雷节 点.单元幕墙避雷节点等). 防雷立面图和防雷平面网格布置图组成.适用于我公司工程上常用的框架式玻璃.石材.铝板幕墙,单元式玻璃.石材.铝板幕墙的防雷设计. 二.幕墙 ...

© 2024 范文中心 | 联系我们 webmaster# onjobs.com.cn